DOI QR코드

DOI QR Code

Effects of Sulfuric Acid Concentration and Alloying Elements on the Corrosion Resistance of Cu-bearing low Alloy Steels

  • Kim, Ki Tae (Materials Research Center for Clean and Energy Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Young Sik (Materials Research Center for Clean and Energy Technology, School of Materials Science and Engineering, Andong National University)
  • 투고 : 2018.08.08
  • 심사 : 2018.08.30
  • 발행 : 2018.08.30

초록

During the process of sulfur dioxide removal, flue gas desulfurization equipment provides a serious internal corrosion environment in creating sulfuric acid dew point corrosion. Therefore, the utilities must use the excellent corrosion resistance of steel desulfurization facilities in the atmosphere. Until now, the trend in developing anti-sulfuric acid steels was essentially the addition of Cu, in order to improve the corrosion resistance. The experimental alloy used in this study is Fe-0.03C-1.0Mn-0.3Si-0.15Ni-0.31Cu alloys to which Ru, Zn and Ta were added. In order to investigate the effect of $H_2SO_4$ concentration and the alloying elements, chemical and electrochemical corrosion tests were performed. In a low concentration of $H_2SO_4$ solution, the major factor affecting the corrosion rate of low alloy steels was the exchange current density for $H^+/H_2$ reaction, while in a high concentration of $H_2SO_4$ solution, the major factors were the thin and dense passive film and resulting passivation behavior. The alloying elements reducing the exchange current density in low concentration of $H_2SO_4$, and the alloying elements decreasing the passive current density in high concentration of $H_2SO_4$, together play an important role in determining the corrosion rate of Cu-bearing low alloy steels in a wide range of $H_2SO_4$ solution.

키워드

참고문헌

  1. A. K. Sharma, D. S. N. Prasad, S. Acharya, and R. Sharma, Int. J. Chem. Eng. Appl., 3, 129 (2012).
  2. J. T. Lee and M. C. Chen, Using Seawater to Remove $SO_2$ in a FGD System, open access, p. 427, Waste Water - Treatment and Reutilization, InTech, London (2011).
  3. J. E. Staudt, S. R. Khan, and M. J. Oliva, Proc. Combined Power Plant Air Pollutant Control Mega Symposium 2004, Paper # 04-A-56-AWMA, Washington (2004).
  4. D. Kelley, J. Reinf. Plast. Comp., 51, 14, (2007).
  5. S. A. Park and J. G. Kim, Kor. J. Met. Mater., 52, 837 (2014). https://doi.org/10.3365/KJMM.2014.52.11.837
  6. M. Seo, G. Hultquist, C. Leygraf, and N. Sato, Corros. Sci., 26, 949 (1986). https://doi.org/10.1016/0010-938X(86)90085-5
  7. A. Yamamoto, T. Ashiura, and E. Kamisaka, Corros. Eng., 35, 48, (1986).
  8. J. Okamoto, A. Usami, and H. Mimura, Nippon Steel Technical Report, 87, 46 (2003).
  9. J. Y. Park, K. J. Chung, and S. H. Lee, POSCO Research paper, 12, 23 (2007).
  10. S. H. Kim, S. A. Park, J. G. Kim, K. S. Shin, and Y. He, Met. Mater. Int., 21, 232 (2015). https://doi.org/10.1007/s12540-015-4090-x
  11. A. Pardo, M. C. Merino, Corros. Sci., 48, 1075 (2006). https://doi.org/10.1016/j.corsci.2005.05.002
  12. K. N. Oh, and S. H Ahn, Electrochim. Acta, 88, 170 (2013). https://doi.org/10.1016/j.electacta.2012.10.058
  13. J. H. Hong, S. H. Lee, and J. G. Kim, Corros. Sci., 54, 174 (2012). https://doi.org/10.1016/j.corsci.2011.09.012
  14. J. S. Lee, S. T. Kim, and I. S. Lee, Mater. Trans., 53, 1048 (2012). https://doi.org/10.2320/matertrans.M2012008
  15. S. T. Kim, Y. S. Park, H. J. Kim, Corros. Sci. Tech., 28, 281 (1999).
  16. H. E. Townsend, Corrosion, 57, 497 (2001). https://doi.org/10.5006/1.3290374
  17. H. E. Townsend, T. C. Simpson, and G. L. Jhonson, Corrosion, 50, 546 (1994). https://doi.org/10.5006/1.3294356
  18. M. J. Kim and J. G. Kim, Int. J. Electrochem. Sci., 10, 6872 (2015).
  19. K. H. Kim, S. H. Lee, N. D. Nam, and J. G. Kim, Corros. Sci., 53, 3576 (2011). https://doi.org/10.1016/j.corsci.2011.07.001
  20. S. A. Park, J. G. Kim, and J. B. Yoon, Corrosion, 70, 196 (2014). https://doi.org/10.5006/0923
  21. D. Devilliers, M. T. Dinh, E. Mahe, D. Krulic, N. Larabi and N. Fatouros, J. New. Mat, Electrochem. systems, 2, 221 (2006).
  22. N. D. Nam and J. G. Kim, Corros. Sci., 52, 3337 (2010).
  23. L. L. Wikstrom, N. T. Thomas, and K. Nobe, J. Electrochem. Soc., 122, 1201 (1975). https://doi.org/10.1149/1.2134425
  24. M. Metikos-Hukovic and B. Lovrecek, Electrochim. Acta, 25, 717 (1979).
  25. IARC, Antimony trioxide and antimony trisulfide, IARCMonog. Eval. Carc, 47, 291 (1989).
  26. NARS, Main Issues regarding the Introduction of the Good Samaritan Law, 90, 67, (2010).
  27. S. Uttiya, D. Contarino, S. Prandi, M. Carnasciali, G. Gemme, L. Mattera, R. Rolandi, M. Canepa, and O. Cavalleri, J. Mater. Sci. Nanotechnol., 1, 1 (2014).
  28. A. S. Mogoda, W. A. Badawy and M. M. Ibrahim, Indian J. Chem. Techn., 2, 217 (1995).
  29. D. L. Graver, Corrosion data survey-Metals section, 6th ed., p. 69, NACE, Texas (1985).
  30. J. H. Potgieter, W. Skinner, and A. M. Heyns, INCSAC, 2, 235 (1992).
  31. P. P. Sharma and I. I. Suni, J. Electrochem. Soc., 158, H111 (2011). https://doi.org/10.1149/1.3519848
  32. E. B. Ituen, Advan. Appl. Sci. Res., 5, 26 (2014).
  33. S. A. Odoemelam, E. C. Ogoko, B. I. Ita, N. O. Eddy, Port. Electrochim. Acta, 27, 57 (2009). https://doi.org/10.4152/pea.200901057