DOI QR코드

DOI QR Code

Recent Advances in the Image-Guided Tumor Ablation of Liver Malignancies: Radiofrequency Ablation with Multiple Electrodes, Real-Time Multimodality Fusion Imaging, and New Energy Sources

  • Lee, Dong Ho (Department of Radiology, Seoul National University Hospital) ;
  • Lee, Jeong Min (Department of Radiology, Seoul National University Hospital)
  • 투고 : 2017.08.06
  • 심사 : 2018.01.27
  • 발행 : 2018.08.01

초록

Radiofrequency ablation (RFA) has emerged as an effective loco-regional treatment modality for malignant hepatic tumors. Indeed, studies have demonstrated that RFA of early stage hepatocellular carcinomas can provide comparable overall survival to surgical resection. However, the incidence of local tumor progression (LTP) after RFA is significantly higher than that of surgical resection. Thus, to overcome this limitation, multiple electrode radiofrequency (RF) systems that use a multi-channel RF generator have been developed, and they demonstrate better efficiency in creating larger ablation zones than that using the conventional RFA with a single electrode. Furthermore, RFA with multiple electrodes can allow the "no-touch" ablation technique which may also help to reduce LTP. Another technique that would be helpful in this regard is multi-modality-ultrasound fusion imaging, which helps to not only more accurately determine the target lesion by enabling the RFA of small, poorly visible or invisible tumors, but also improve the monitoring of procedures and determine the appropriateness of the ablation margin. In addition, new energy sources, including microwave and cryoablation, have been introduced in imaging-guided tumor ablation. In this review, these recently introduced ablation techniques and the results of the most current animal and clinical studies are discussed.

키워드

참고문헌

  1. Ahmed M; Technology Assessment Committee of the Society of Interventional Radiology. Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update: supplement to the consensus document. J Vasc Interv Radiol 2014;25:1706-1708 https://doi.org/10.1016/j.jvir.2014.09.005
  2. Shiina S, Tateishi R, Imamura M, Teratani T, Koike Y, Sato S, et al. Percutaneous ethanol injection for hepatocellular carcinoma: 20-year outcome and prognostic factors. Liver Int 2012;32:1434-1442 https://doi.org/10.1111/j.1478-3231.2012.02838.x
  3. Bouza C, Lopez-Cuadrado T, Alcazar R, Saz-Parkinson Z, Amate JM. Meta-analysis of percutaneous radiofrequency ablation versus ethanol injection in hepatocellular carcinoma. BMC Gastroenterol 2009;9:31 https://doi.org/10.1186/1471-230X-9-31
  4. Lencioni R, de Baere T, Martin RC, Nutting CW, Narayanan G. Image-guided ablation of malignant liver tumors: recommendations for clinical validation of novel thermal and non-thermal technologies - a western perspective. Liver Cancer 2015;4:208-214 https://doi.org/10.1159/000367747
  5. Habib A, Desai K, Hickey R, Thornburg B, Lewandowski R, Salem R. Locoregional therapy of hepatocellular carcinoma. Clin Liver Dis 2015;19:401-420 https://doi.org/10.1016/j.cld.2015.01.008
  6. Solbiati L, Livraghi T, Goldberg SN, Ierace T, Meloni F, Dellanoce M, et al. Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology 2001;221:159-166 https://doi.org/10.1148/radiol.2211001624
  7. N'Kontchou G, Mahamoudi A, Aout M, Ganne-Carrie N, Grando V, Coderc E, et al. Radiofrequency ablation of hepatocellular carcinoma: long-term results and prognostic factors in 235 western patients with cirrhosis. Hepatology 2009;50:1475-1483 https://doi.org/10.1002/hep.23181
  8. Shiina S, Tateishi R, Arano T, Uchino K, Enooku K, Nakagawa H, et al. Radiofrequency ablation for hepatocellular carcinoma: 10-year outcome and prognostic factors. Am J Gastroenterol 2012;107:569-577; quiz 578 https://doi.org/10.1038/ajg.2011.425
  9. Kim YS, Lim HK, Rhim H, Lee MW, Choi D, Lee WJ, et al. Tenyear outcomes of percutaneous radiofrequency ablation as first-line therapy of early hepatocellular carcinoma: analysis of prognostic factors. J Hepatol 2013;58:89-97 https://doi.org/10.1016/j.jhep.2012.09.020
  10. Minami Y, Kudo M. Radiofrequency ablation of liver metastases from colorectal cancer: a literature review. Gut Liver 2013;7:1-6 https://doi.org/10.5009/gnl.2013.7.1.1
  11. Lee DH, Lee JM, Lee JY, Kim SH, Yoon JH, Kim YJ, et al. Radiofrequency ablation of hepatocellular carcinoma as firstline treatment: long-term results and prognostic factors in 162 patients with cirrhosis. Radiology 2014;270:900-909 https://doi.org/10.1148/radiol.13130940
  12. Chen MS, Li JQ, Zheng Y, Guo RP, Liang HH, Zhang YQ, et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg 2006;243:321-328 https://doi.org/10.1097/01.sla.0000201480.65519.b8
  13. Cucchetti A, Piscaglia F, Cescon M, Colecchia A, Ercolani G, Bolondi L, et al. Cost-effectiveness of hepatic resection versus percutaneous radiofrequency ablation for early hepatocellular carcinoma. J Hepatol 2013;59:300-307 https://doi.org/10.1016/j.jhep.2013.04.009
  14. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012;379:1245-1255 https://doi.org/10.1016/S0140-6736(11)61347-0
  15. Shady W, Petre EN, Gonen M, Erinjeri JP, Brown KT, Covey AM, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes--a 10-year experience at a single center. Radiology 2016;278:601-611 https://doi.org/10.1148/radiol.2015142489
  16. Kim YS, Lee WJ, Rhim H, Lim HK, Choi D, Lee JY. The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (> 2 and < 5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion. AJR Am J Roentgenol 2010;195:758-765 https://doi.org/10.2214/AJR.09.2954
  17. Kang TW, Lee MW, Song KD, Rhim H, Lim HK, Kang W, et al. Ultrasound-guided radiofrequency ablation using a new electrode with an electromagnetic position sensor for hepatic tumors difficult to place an electrode: a preliminary clinical study. Cardiovasc Intervent Radiol 2017;40:1891-1898 https://doi.org/10.1007/s00270-017-1751-9
  18. Ahn SJ, Lee JM, Lee DH, Lee SM, Yoon JH, Kim YJ, et al. Real-time US-CT/MR fusion imaging for percutaneous radiofrequency ablation of hepatocellular carcinoma. J Hepatol 2017;66:347-354 https://doi.org/10.1016/j.jhep.2016.09.003
  19. Lee MW, Rhim H, Cha DI, Kim YJ, Choi D, Kim YS, et al. Percutaneous radiofrequency ablation of hepatocellular carcinoma: fusion imaging guidance for management of lesions with poor conspicuity at conventional sonography. AJR Am J Roentgenol 2012;198:1438-1444 https://doi.org/10.2214/AJR.11.7568
  20. Lee MW, Rhim H, Cha DI, Kim YJ, Lim HK. Planning US for percutaneous radiofrequency ablation of small hepatocellular carcinomas (1-3 cm): value of fusion imaging with conventional US and CT/MR images. J Vasc Interv Radiol 2013;24:958-965 https://doi.org/10.1016/j.jvir.2013.04.007
  21. Lee MW. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention. Ultrasonography 2014;33:227-239 https://doi.org/10.14366/usg.14021
  22. Kang TW, Rhim H. Recent advances in tumor ablation for hepatocellular carcinoma. Liver Cancer 2015;4:176-187 https://doi.org/10.1159/000367740
  23. Brace CL, Sampson LA, Hinshaw JL, Sandhu N, Lee FT Jr. Radiofrequency ablation: simultaneous application of multiple electrodes via switching creates larger, more confluent ablations than sequential application in a large animal model. J Vasc Interv Radiol 2009;20:118-124 https://doi.org/10.1016/j.jvir.2008.09.021
  24. Chang W, Lee JM, Yoon JH, Lee DH, Lee SM, Lee KB, et al. No-touch radiofrequency ablation using multiple electrodes: an in vivo comparison study of switching monopolar versus switching bipolar modes in porcine livers. PLoS One 2017;12:e0176350 https://doi.org/10.1371/journal.pone.0176350
  25. Lee J, Lee JM, Yoon JH, Lee JY, Kim SH, Lee JE, et al. Percutaneous radiofrequency ablation with multiple electrodes for medium-sized hepatocellular carcinomas. Korean J Radiol 2012;13:34-43 https://doi.org/10.3348/kjr.2012.13.1.34
  26. Mulier S, Miao Y, Mulier P, Dupas B, Pereira P, de Baere T, et al. Electrodes and multiple electrode systems for radiofrequency ablation: a proposal for updated terminology. Eur Radiol 2005;15:798-808 https://doi.org/10.1007/s00330-004-2584-x
  27. Denys AL, De Baere T, Kuoch V, Dupas B, Chevallier P, Madoff DC, et al. Radio-frequency tissue ablation of the liver: in vivo and ex vivo experiments with four different systems. Eur Radiol 2003;13:2346-2352 https://doi.org/10.1007/s00330-003-1970-0
  28. Pereira PL, Trubenbach J, Schenk M, Subke J, Kroeber S, Schaefer I, et al. Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology 2004;232:482-490 https://doi.org/10.1148/radiol.2322030184
  29. Ni Y, Mulier S, Miao Y, Michel L, Marchal G. A review of the general aspects of radiofrequency ablation. Abdom Imaging 2005;30:381-400 https://doi.org/10.1007/s00261-004-0253-9
  30. Nahum Goldberg S, Dupuy DE. Image-guided radiofrequency tumor ablation: challenges and opportunities--part I. J Vasc Interv Radiol 2001;12:1021-1032 https://doi.org/10.1016/S1051-0443(07)61587-5
  31. Goldberg SN. Radiofrequency tumor ablation: principles and techniques. Eur J Ultrasound 2001;13:129-147 https://doi.org/10.1016/S0929-8266(01)00126-4
  32. Lee JM, Han JK, Kim SH, Lee JY, Kim DJ, Lee MW, et al. Saline-enhanced hepatic radiofrequency ablation using a perfused-cooled electrode: comparison of dual probe bipolar mode with monopolar and single probe bipolar modes. Korean J Radiol 2004;5:121-127 https://doi.org/10.3348/kjr.2004.5.2.121
  33. Dodd GD 3rd, Frank MS, Aribandi M, Chopra S, Chintapalli KN. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol 2001;177:777-782 https://doi.org/10.2214/ajr.177.4.1770777
  34. Dupuy DE, Goldberg SN. Image-guided radiofrequency tumor ablation: challenges and opportunities--part II. J Vasc Interv Radiol 2001;12:1135-1148 https://doi.org/10.1016/S1051-0443(07)61670-4
  35. Chen MH, Yang W, Yan K, Zou MW, Solbiati L, Liu JB, et al. Large liver tumors: protocol for radiofrequency ablation and its clinical application in 110 patients--mathematic model, overlapping mode, and electrode placement process. Radiology 2004;232:260-271 https://doi.org/10.1148/radiol.2321030821
  36. Lee JM, Han JK, Kim HC, Choi YH, Kim SH, Choi JY, et al. Switching monopolar radiofrequency ablation technique using multiple, internally cooled electrodes and a multichannel generator: ex vivo and in vivo pilot study. Invest Radiol 2007;42:163-171 https://doi.org/10.1097/01.rli.0000252495.44818.b3
  37. Laeseke PF, Frey TM, Brace CL, Sampson LA, Winter TC 3rd, Ketzler JR, et al. Multiple-electrode radiofrequency ablation of hepatic malignancies: initial clinical experience. AJR Am J Roentgenol 2007;188:1485-1494 https://doi.org/10.2214/AJR.06.1004
  38. Woo S, Lee JM, Yoon JH, Joo I, Kim SH, Lee JY, et al. Smalland medium-sized hepatocellular carcinomas: monopolar radiofrequency ablation with a multiple-electrode switching system-mid-term results. Radiology 2013;268:589-600 https://doi.org/10.1148/radiol.13121736
  39. Choi JW, Lee JM, Lee DH, Yoon JH, Suh KS, Yoon JH, et al. Switching monopolar radiofrequency ablation using a separable cluster electrode in patients with hepatocellular carcinoma: a prospective study. PLoS One 2016;11:e0161980 https://doi.org/10.1371/journal.pone.0161980
  40. Yoon JH, Lee JM, Han JK, Choi BI. Dual switching monopolar radiofrequency ablation using a separable clustered electrode: comparison with consecutive and switching monopolar modes in ex vivo bovine livers. Korean J Radiol 2013;14:403-411 https://doi.org/10.3348/kjr.2013.14.3.403
  41. Yoon JH, Lee JM, Hwang EJ, Hwang IP, Baek J, Han JK, et al. Monopolar radiofrequency ablation using a dual-switching system and a separable clustered electrode: evaluation of the in vivo efficiency. Korean J Radiol 2014;15:235-244 https://doi.org/10.3348/kjr.2014.15.2.235
  42. Choi TW, Lee JM, Lee DH, Lee JH, Yu SJ, Kim YJ, et al. Percutaneous dual-switching monopolar radiofrequency ablation using a separable clustered electrode: a preliminary study. Korean J Radiol 2017;18:799-808 https://doi.org/10.3348/kjr.2017.18.5.799
  43. Lee JM, Han JK, Kim SH, Lee JY, Shin KS, Choi BI. An ex-vivo experimental study on optimization of bipolar radiofrequency liver ablation using perfusion-cooled electrodes. Acta Radiol 2005;46:443-451 https://doi.org/10.1080/02841850510021418
  44. Hocquelet A, Aube C, Rode A, Cartier V, Sutter O, Manichon AF, et al. Comparison of no-touch multi-bipolar vs. monopolar radiofrequency ablation for small HCC. J Hepatol 2017;66:67-74 https://doi.org/10.1016/j.jhep.2016.07.010
  45. Seror O, Sutter O. RE: should we use a monopolar or bipolar mode for performing no-touch radiofrequency ablation of liver tumors? Clinical practice might have already resolved the matter once and for all. Korean J Radiol 2017;18:749-752 https://doi.org/10.3348/kjr.2017.18.4.749
  46. Yoon JH, Lee JM, Woo S, Hwang EJ, Hwang I, Choi W, et al. Switching bipolar hepatic radiofrequency ablation using internally cooled wet electrodes: comparison with consecutive monopolar and switching monopolar modes. Br J Radiol 2015;88:20140468 https://doi.org/10.1259/bjr.20140468
  47. Espinoza S, Briggs P, Duret JS, Lapeyre M, de Baere T. Radiofrequency ablation of needle tract seeding in hepatocellular carcinoma. J Vasc Interv Radiol 2005;16:743-746 https://doi.org/10.1097/01.RVI.0000153109.56827.70
  48. Jaskolka JD, Asch MR, Kachura JR, Ho CS, Ossip M, Wong F, et al. Needle tract seeding after radiofrequency ablation of hepatic tumors. J Vasc Interv Radiol 2005;16:485-491 https://doi.org/10.1097/01.RVI.0000151141.09597.5F
  49. Stigliano R, Marelli L, Yu D, Davies N, Patch D, Burroughs AK. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev 2007;33:437-447 https://doi.org/10.1016/j.ctrv.2007.04.001
  50. Llovet JM, Vilana R, Bru C, Bianchi L, Salmeron JM, Boix L, et al.; Barcelona Clinic Liver Cancer (BCLC) Group. Increased risk of tumor seeding after percutaneous radiofrequency ablation for single hepatocellular carcinoma. Hepatology 2001;33:1124-1129 https://doi.org/10.1053/jhep.2001.24233
  51. Mulier S, Mulier P, Ni Y, Miao Y, Dupas B, Marchal G, et al. Complications of radiofrequency coagulation of liver tumours. Br J Surg 2002;89:1206-1222 https://doi.org/10.1046/j.1365-2168.2002.02168.x
  52. Kang TW, Lim HK, Lee MW, Kim YS, Choi D, Rhim H. Firstline radiofrequency ablation with or without artificial ascites for hepatocellular carcinomas in a subcapsular location: local control rate and risk of peritoneal seeding at long-term follow-up. Clin Radiol 2013;68:e641-e651 https://doi.org/10.1016/j.crad.2013.07.008
  53. Seror O, N'Kontchou G, Nault JC, Rabahi Y, Nahon P, Ganne-Carrie N, et al. Hepatocellular carcinoma within Milan criteria: no-touch multibipolar radiofrequency ablation for treatmentlong-term results. Radiology 2016;280:611-621 https://doi.org/10.1148/radiol.2016150743
  54. Lee DH, Lee JM, Yoon JH, Kim YJ, Han JK. Thermal injuryinduced hepatic parenchymal hypoperfusion: risk of hepatocellular carcinoma recurrence after radiofrequency ablation. Radiology 2017;282:880-891 https://doi.org/10.1148/radiol.2016152322
  55. Chang W, Lee JM, Lee SM, Han JK. No-touch radiofrequency ablation: a comparison of switching bipolar and switching monopolar ablation in ex vivo bovine liver. Korean J Radiol 2017;18:279-288 https://doi.org/10.3348/kjr.2017.18.2.279
  56. Wang X, Hu Y, Ren M, Lu X, Lu G, He S. Efficacy and safety of radiofrequency ablation combined with transcatheter arterial chemoembolization for hepatocellular carcinomas compared with radiofrequency ablation alone: a time-to-event metaanalysis. Korean J Radiol 2016;17:93-102 https://doi.org/10.3348/kjr.2016.17.1.93
  57. Ni JY, Liu SS, Xu LF, Sun HL, Chen YT. Meta-analysis of radiofrequency ablation in combination with transarterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol 2013;19:3872-3882 https://doi.org/10.3748/wjg.v19.i24.3872
  58. Lu Z, Wen F, Guo Q, Liang H, Mao X, Sun H. Radiofrequency ablation plus chemoembolization versus radiofrequency ablation alone for hepatocellular carcinoma: a meta-analysis of randomized-controlled trials. Eur J Gastroenterol Hepatol 2013;25:187-194 https://doi.org/10.1097/MEG.0b013e32835a0a07
  59. Lencioni R, Cioni D, Crocetti L, Franchini C, Pina CD, Lera J, et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology 2005;234:961-967 https://doi.org/10.1148/radiol.2343040350
  60. Rhim H, Lee MH, Kim YS, Choi D, Lee WJ, Lim HK. Planning sonography to assess the feasibility of percutaneous radiofrequency ablation of hepatocellular carcinomas. AJR Am J Roentgenol 2008;190:1324-1330 https://doi.org/10.2214/AJR.07.2970
  61. Lee MW, Lim HK, Kim YJ, Choi D, Kim YS, Lee WJ, et al. Percutaneous sonographically guided radio frequency ablation of hepatocellular carcinoma: causes of mistargeting and factors affecting the feasibility of a second ablation session. J Ultrasound Med 2011;30:607-615 https://doi.org/10.7863/jum.2011.30.5.607
  62. Bruix J, Sherman M; Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 2005;42:1208-1236 https://doi.org/10.1002/hep.20933
  63. European Association For The Study Of The Liver; European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012;56:908-943 https://doi.org/10.1016/j.jhep.2011.12.001
  64. Lee DH, Lee JM, Lee JY, Kim SH, Kim JH, Yoon JH, et al. Nonhypervascular hepatobiliary phase hypointense nodules on gadoxetic acid-enhanced MRI: risk of HCC recurrence after radiofrequency ablation. J Hepatol 2015;62:1122-1130
  65. Maybody M, Stevenson C, Solomon SB. Overview of navigation systems in image-guided interventions. Tech Vasc Interv Radiol 2013;16:136-143 https://doi.org/10.1053/j.tvir.2013.02.008
  66. Ewertsen C, Saftoiu A, Gruionu LG, Karstrup S, Nielsen MB. Real-time image fusion involving diagnostic ultrasound. AJR Am J Roentgenol 2013;200:W249-W255 https://doi.org/10.2214/AJR.12.8904
  67. Abi-Jaoudeh N, Kruecker J, Kadoury S, Kobeiter H, Venkatesan AM, Levy E, et al. Multimodality image fusion-guided procedures: technique, accuracy, and applications. Cardiovasc Intervent Radiol 2012;35:986-998 https://doi.org/10.1007/s00270-012-0446-5
  68. Song KD, Lee MW, Rhim H, Cha DI, Chong Y, Lim HK. Fusion imaging-guided radiofrequency ablation for hepatocellular carcinomas not visible on conventional ultrasound. AJR Am J Roentgenol 2013;201:1141-1147 https://doi.org/10.2214/AJR.13.10532
  69. Crocetti L, Lencioni R, Debeni S, See TC, Pina CD, Bartolozzi C. Targeting liver lesions for radiofrequency ablation: an experimental feasibility study using a CT-US fusion imaging system. Invest Radiol 2008;43:33-39 https://doi.org/10.1097/RLI.0b013e31815597dc
  70. Lee JY, Choi BI, Chung YE, Kim MW, Kim SH, Han JK. Clinical value of CT/MR-US fusion imaging for radiofrequency ablation of hepatic nodules. Eur J Radiol 2012;81:2281-2289 https://doi.org/10.1016/j.ejrad.2011.08.013
  71. Lee MW, Kim YJ, Park HS, Yu NC, Jung SI, Ko SY, et al. Targeted sonography for small hepatocellular carcinoma discovered by CT or MRI: factors affecting sonographic detection. AJR Am J Roentgenol 2010;194:W396-W400 https://doi.org/10.2214/AJR.09.3171
  72. Minami T, Minami Y, Chishina H, Arizumi T, Takita M, Kitai S, et al. Combination guidance of contrast-enhanced US and fusion imaging in radiofrequency ablation for hepatocellular carcinoma with poor conspicuity on contrast-enhanced US/fusion imaging. Oncology 2014;87 Suppl 1:55-62 https://doi.org/10.1159/000368146
  73. Lim S, Lee MW, Rhim H, Cha DI, Kang TW, Min JH, et al. Mistargeting after fusion imaging-guided percutaneous radiofrequency ablation of hepatocellular carcinomas. J Vasc Interv Radiol 2014;25:307-314 https://doi.org/10.1016/j.jvir.2013.10.025
  74. Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update. Radiology 2014;273:241-260 https://doi.org/10.1148/radiol.14132958
  75. Martin RC, Scoggins CR, McMasters KM. Safety and efficacy of microwave ablation of hepatic tumors: a prospective review of a 5-year experience. Ann Surg Oncol 2010;17:171-178 https://doi.org/10.1245/s10434-009-0686-z
  76. Ding J, Jing X, Liu J, Wang Y, Wang F, Wang Y, et al. Comparison of two different thermal techniques for the treatment of hepatocellular carcinoma. Eur J Radiol 2013;82:1379-1384 https://doi.org/10.1016/j.ejrad.2013.04.025
  77. Lee KF, Hui JW, Cheung YS, Wong JS, Chong CN, Wong J, et al. Surgical ablation of hepatocellular carcinoma with 2.45-GHz microwave: a critical appraisal of treatment outcomes. Hong Kong Med J 2012;18:85-91
  78. Abdelaziz A, Elbaz T, Shousha HI, Mahmoud S, Ibrahim M, Abdelmaksoud A, et al. Efficacy and survival analysis of percutaneous radiofrequency versus microwave ablation for hepatocellular carcinoma: an Egyptian multidisciplinary clinic experience. Surg Endosc 2014;28:3429-3434 https://doi.org/10.1007/s00464-014-3617-4
  79. Poulou LS, Botsa E, Thanou I, Ziakas PD, Thanos L. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma. World J Hepatol 2015;7:1054-1063 https://doi.org/10.4254/wjh.v7.i8.1054
  80. Lu MD, Xu HX, Xie XY, Yin XY, Chen JW, Kuang M, et al. Percutaneous microwave and radiofrequency ablation for hepatocellular carcinoma: a retrospective comparative study. J Gastroenterol 2005;40:1054-1060 https://doi.org/10.1007/s00535-005-1671-3
  81. Song KD. Percutaneous cryoablation for hepatocellular carcinoma. Clin Mol Hepatol 2016;22:509-515 https://doi.org/10.3350/cmh.2016.0079
  82. Wang C, Wang H, Yang W, Hu K, Xie H, Hu KQ, et al. Multicenter randomized controlled trial of percutaneous cryoablation versus radiofrequency ablation in hepatocellular carcinoma. Hepatology 2015;61:1579-1590 https://doi.org/10.1002/hep.27548

피인용 문헌

  1. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  2. Safety and technical feasibility of percutaneous ablation for lymph node metastases of hepatocellular carcinoma vol.36, pp.1, 2018, https://doi.org/10.1080/02656736.2018.1542510
  3. Usefulness of Virtual Expiratory CT Images to Compensate for Respiratory Liver Motion in Ultrasound/CT Image Fusion: A Prospective Study in Patients with Focal Hepatic Lesions vol.20, pp.2, 2019, https://doi.org/10.3348/kjr.2018.0320
  4. Impact of Energy and Access Methods on Extrahepatic Tumor Spreading and the Ablation Zone: An Ex vivo Experiment Using a Subcapsular Tumor Model vol.20, pp.4, 2018, https://doi.org/10.3348/kjr.2018.0564
  5. Development and validation of a prognostic model for patients with hepatocellular carcinoma undergoing radiofrequency ablation vol.8, pp.11, 2018, https://doi.org/10.1002/cam4.2417
  6. Locoregional treatments for hepatocellular carcinoma: Current evidence and future directions vol.25, pp.32, 2018, https://doi.org/10.3748/wjg.v25.i32.4614
  7. Radiofrequency Ablation Using a Separable Clustered Electrode for the Treatment of Hepatocellular Carcinomas: A Randomized Controlled Trial of a Dual-Switching Monopolar Mode Versus a Single-Switching vol.21, pp.None, 2018, https://doi.org/10.3348/kjr.2020.0134
  8. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
  9. Efficacy and safety of ultrasonography-guided radiofrequency ablation for the treatment of T1bN0M0 papillary thyroid carcinoma: a retrospective study vol.37, pp.1, 2018, https://doi.org/10.1080/02656736.2020.1752945
  10. Application of Image Fusion in Diagnosis and Treatment of Liver Cancer vol.10, pp.3, 2020, https://doi.org/10.3390/app10031171
  11. Performing thermal ablations for hepatomas - is it a worthy skill for hepatologists? vol.19, pp.5, 2020, https://doi.org/10.1016/j.aohep.2020.05.004
  12. No-Touch vs. Conventional Radiofrequency Ablation Using Twin Internally Cooled Wet Electrodes for Small Hepatocellular Carcinomas: A Randomized Prospective Comparative Study vol.22, pp.None, 2021, https://doi.org/10.3348/kjr.2021.0319
  13. Efficacy and Safety of Fusion Imaging in Radiofrequency Ablation of Hepatocellular Carcinoma Compared to Ultrasound: A Meta-Analysis vol.8, pp.None, 2018, https://doi.org/10.3389/fsurg.2021.728098
  14. Computer modeling and in vitro experimental study of water-cooled microwave ablation array vol.30, pp.1, 2021, https://doi.org/10.1080/13645706.2019.1674878
  15. Application of ultrasound-guided biopsy and percutaneous radiofrequency ablation in 2 cases with phosphaturic mesenchymal tumor and literature review vol.77, pp.1, 2018, https://doi.org/10.3233/ch-200921
  16. Feasibility of 3D US/CEUS-US/CEUS fusion imaging-based ablation planning in liver tumors: a retrospective study vol.46, pp.6, 2018, https://doi.org/10.1007/s00261-020-02909-5
  17. Multielectrode Radiofrequency Ablation for Resectable Metachronous Liver Metastasis from Colorectal Cancer vol.10, pp.16, 2018, https://doi.org/10.3390/jcm10163712
  18. Outcome of No-Touch Radiofrequency Ablation for Small Hepatocellular Carcinoma: A Multicenter Clinical Trial vol.301, pp.1, 2021, https://doi.org/10.1148/radiol.2021210309
  19. Recent technical advances in radiofrequency ablations for hepatocellular carcinoma vol.10, pp.4, 2018, https://doi.org/10.18528/ijgii210050
  20. Efficacy and safety of various primary treatment strategies for very early and early hepatocellular carcinoma: a network meta-analysis vol.21, pp.1, 2018, https://doi.org/10.1186/s12935-021-02365-1