DOI QR코드

DOI QR Code

Development of Procurement Announcement Analysis Support System

전자조달공고 분석지원 시스템 개발

  • Lim, Il-kwon (Content Curation Center, Korea Institute of Science and Technology Information) ;
  • Park, Dong-Jun (Division of Mining Service, Daumsoft Inc.) ;
  • Cho, Han-Jin (Dept. of Energy IT Engineering, Far East University)
  • 임일권 (한국과학기술정보연구원 콘텐츠큐레이션센터) ;
  • 박동준 ((주)다음소프트 마이닝서비스) ;
  • 조한진 (극동대학교 에너지IT공학과)
  • Received : 2018.05.19
  • Accepted : 2018.08.20
  • Published : 2018.08.28

Abstract

Domestic public e-procurement has been recognized excellence at home and abroad. However, it is difficult for procurement companies to check the related announcements and to grasp the status of procurement announcements at a glance. In this paper, we propose an e-Procurement Announcement Analysis Support System using the HDFS, HDFS, Apache Spark, and Collaborative Filtering Technology for procurement announcement recommendation service and procurement announcement and contract trend analysis service for effective e-procurement system. Procurement announcement recommendation service can relieve the procurement company from searching for announcements according to the characteristics and characteristics of the procurement company. The procurement announcement/contract trend analysis service visualizes the procurement announcement/contract information and procures It is implemented so that the analysis information of electronic procurement can be seen at a glance to the company and the demand organization.

국내 공공전자조달은 국내외에 우수성을 인정받고 있다. 하지만 수요기관이 발주 시 조달업체가 관련 공고를 일일이 확인하거나, 전체 조달공고현황을 한눈에 파악하기에는 어려움이 있다. 그에 따라 본 논문에서는 효과적인 전자조달시스템의 활용을 위해 빅데이터 기술인 HDFS와 아파치 스파크 기술, 협업필터링 기술을 이용하여, 조달공고 추천서비스와 조달공고 계약 트렌드 분석 서비스 구현을 통한 전자조달공고 분석지원 시스템을 개발하였다. 조달공고 추천서비스는 조달업체의 특성과 성격에 맞는 공고를 추천함에 따라 조달업체가 일일이 공고를 검색하는 수고를 덜어 줄 수 있으며, 조달 공고 계약 트렌드 분석 서비스는 조달 공고/계약 정보를 시각화하여 조달업체와 수요기관에게 전자조달의 분석정보를 한눈에 확인할 수 있도록 구현하였다.

Keywords

References

  1. H. Y. Jin. (May 2016). National e - procurement system construction and utilization trends. Information and communication broadcasting policy, 28(8), 18-26.
  2. D. Y. Jung, M. C. Kim & S. J. Kwon. (2016). Status of the self-procurement system of public institutions and integration plan of procurement system, National Assembly Research Service.
  3. Procurement scale of the entire public procurement market. ontongjodal - public procurement statistics system(online). ppstat.g2b.go.kr, accessed : 28 Mar 28 2018
  4. E-government introduction, E-government support project(online). egov.nia.or.kr. accessed : 28 Mar 2018
  5. UN E-Government Development Index. e-nalajipyo. http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1027, accessed : 28 Mar 2018
  6. Ministry of the Interior and Safety. (2016). E-government promotion booklet. Seoul
  7. H. S. Byeon. (Apl. 2017). The Status and Suggestions for Big Data Adaptation in the Government and the Public Agency. Journal of Digital Convergence, 15(4), 13-25. https://doi.org/10.14400/JDC.2017.15.4.13
  8. Joseph A. K. & John R. (24 Sep. 2012). Deconstructing Recommender Systems - How Amazon and Netflix predict your preferences and prod you to purchase. IEEE SPECTRUM(online), https://spectrum.ieee.org/computing/software/deconstructing-recommender-systems
  9. B. W. Seo. (Apl 2016). Evolution of content recommendation algorithm. BROADCASTING TREND & INSIGHT, 05, 19-24
  10. H. J. Cho & P. G. Lee. (2014). Distributed Recommendation System Using Clustering-based Collaborative Filtering Algorithm, The Journal of IIBC, 14(1), 101-107.
  11. S. G. Lee. (21 Sep 2016). [BLOOTER 10th] Algorithm that the press should know (2) Collaborative filtering recommendation. BLOTER. https://www.bloter.net/archives/263722
  12. Z. Zhao & M. Shang. (2010). User-based Collaborative-Filtering Recommendation Algorithms on Hadoop, 2010 Third International Conference on Knowledge Discovery and Data Mining, 478-481
  13. J. W. Kim, H. J. Jung & J. H. Oh (2011). Application of Social Network Analysis Metrics for Collaborative Filtering-based Personalized Recommendation. 2011 KORMS/KIIE Spring Joint Conference Paper, 1133-1137)
  14. B. Sarwar, G. Karypis, J. Konstan, & J. Riedl. (2001). Item-based Collaborative Filtering Recommendation Algorithm, WWW10, 1-15
  15. H. J. Mun, S. H. Choi & Y. C. Hwang. (Mar. 2016). Effective Countermeasure to APT Attacks using Big Data. Journal of Convergence Society for SMB, 6(1), 17-23
  16. J. H. Eun, T. H. Kim, S. W. Lee, C. H. Chung & H. M. Chung. (9 Mar 2013), Next Generation Real Time Big Data Distribution System Trends - Focusing on Sparks and Storms -. IITP, Weekly Technology Trend, 1-13
  17. NIPA. (18 Jun 2014), Big data processing infrastructure, 100 times faster than Hadoop, 'spark' disclosure, latest ICT trend, 34-36
  18. D. H. Kang. (22 Dec 2016). Introduction and Practice of Apache Spark, SlideShare(Online). https://www.slideshare.net/KangDognhyun/apache-spark-70360736?from_action=save
  19. W. ZHOU (8 Sep 2015). Hadoop, HDFS, MapReduce and Spark on Big Data. My Big Data World(online). https://weidongzhou.wordpress.com/2015/09/08/hadoop-hdfs-mapreduce-and-spark-on-big-data/
  20. Ministry of the Interior and Safety. NIA. (2017). Notice information, contract information of PPS's nalajangteo. Public Data Portal(online). www.data.go.kr
  21. K. B. Kim & H. J. Cho (2017). A Study on the Regulation Improvement Measures for Activation of Internet of Things and Big Data Convergence. Journal of the Korea Convergence Society, 8(5), 29-35. DOI : 10.15207/JKCS.2017.8.5.029
  22. Y. A. Hur, D. Y. Lee, K. K. Kim, W. H. Yu & H. S. Lim (2017). A System for Automatic Classification of Traditional Culture Texts. Journal of the Korea Convergence Society. 8(12), 39-47. DOI : 10.15207/JKCS.2017.8.12.039