References
- Y. Wang, Z. X. Xie, Q. H. Hu, and S. H. Xiong. "Correlation aware multi-step ahead wind speed forecasting with heteroscedastic multi-kernel learning," Energy Conversion and Management, vol. 163, pp. 384-406, May. 2018. https://doi.org/10.1016/j.enconman.2018.02.034
- W. Y. Y. Cheng, Y. B. Liu, A. J. Bourgeois, Y. H. Wu, and S. E. Haupt, "Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation," Renewable Energy, vol. 107, pp. 340-351, Jul. 2017. https://doi.org/10.1016/j.renene.2017.02.014
- Z. D. Tian, S. J. Li, Y. H. Wang, and X. D. Wang. "Wind power prediction method based on hybrid kernel function support vector machine," Wind Engineering, vol. 42, no. 3, pp. 252-264, Jun. 2018. https://doi.org/10.1177/0309524X17737337
- U. Meyyappan. "Wavelet neural network-based wind speed forecasting and application of shuffled frog leap algorithm for economic dispatch with prohibited zones incorporating wind power," Wind Engineering, vol. 42, no. 1, pp. 3-15, Jan. 2018. https://doi.org/10.1177/0309524X17723208
- I. Colak, S. Sagiroglu, and M. Yesilbudak. "Data mining and wind power prediction: A literature review," Renewable Energy, vol. 46, pp. 241-247, Oct. 2012. https://doi.org/10.1016/j.renene.2012.02.015
- T. H. Ouyang, X. M. Zha, L. Qin, Y. Xiong, and T. Xia. "Wind power prediction method based on regime of switching kernel functions," Journal of Wind Engineering & Industrial Aerodynamics, vol. 153, pp. 26-33, Jun. 2016. https://doi.org/10.1016/j.jweia.2016.03.005
- S. Al-Yahyai, Y. Charabi, and A. Gastli. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable & Sustainable Energy Reviews, vol. 14, no. 9, pp. 3192-3198, Dec. 2010. https://doi.org/10.1016/j.rser.2010.07.001
- J. H. Li, J. M. Li, J. Y. Wen, S. J. Cheng, H. L. Xie, and C. Y. Yue. "Generating wind power time series based on its persistence and variation characteristics," Science China Technological Sciences, vol. 57, no. 12, pp. 2457-2486, Dec. 2014.
- C. Liu, C. Li, Y. H. Huang, and Y. F. Wang. "A novel stochastic modeling method of wind power time series considering the fluctuation process characteristics," Journal of Renewable & Sustainable Energy, vol. 8, no. 3, 033304, May. 2016. https://doi.org/10.1063/1.4954079
- C. Wang, H. L. Zhang, W. H. Fan, and X. C. Fan. "A new wind power prediction method based on chaotic theory and Bernstein Neural Network," Energy, vol. 117, pp. 259-271, Dec. 2016. https://doi.org/10.1016/j.energy.2016.10.041
- J. D. Wang, K. J. Fang, W. J. Pang, and J. W. Sun. "Wind power interval prediction based on improved PSO and BP neural network," Journal of Electrical Engineering & Technology, vol. 12, no. 3, pp. 989-995, May. 2017. https://doi.org/10.5370/JEET.2017.12.3.989
- R. R. B. de Aquino, O. N. Neto, R. B. Souza, M. M. S. Lira, M. A. Carvalho, T. B. Ludermir, and A. A. Ferreira. "Investigating the use of echo state networks for prediction of wind power generation," IEEE on Computational Intelligence for Engineering Solutions, 2015, pp. 148-154.
- C. D. Zuluaga, M. A. Alvarez, and E. Giraldo. "Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison," Applied Energy, vol. 156, pp. 321-330, Oct, 2015. https://doi.org/10.1016/j.apenergy.2015.07.043
- J. R. Yang, X. C. Wang, X. F. Luo, and C. Jiang. "Intelligent combined prediction of wind power based on numerical weather prediction and fuzzy clustering," IFAC - Papers Online, vol. 48, no. 28, pp. 538-543, Aug. 2015.
- X. K. Wang, D. S. Luo, and H. Y. He. "An improved feature weighted fuzzy clustering algorithm with its application in short-term prediction of wind power," 6th Chinese Conference on Pattern Recognition, 2014, pp. 575-584.
- Y. X. Liu and Y. Y. Zhang. "A rolling ARMA method for ultra short term wind power prediction," 13th IEEE Conference on Automation Science and Engineering, 2017, pp. 1232-1236.
- X. B. Kong, X. J. Liu, R. F. Shi, and K. Y. Lee. "Wind speed prediction using reduced support vector machines with feature selection," Neurocomputing, vol. 169, pp. 449-456, Dec. 2015. https://doi.org/10.1016/j.neucom.2014.09.090
- Y. C. Xiao, C. Y. Li, and P. Wang. "Wind power prediction based on improved grey theory and SVM," Journal of Information & Computational Science, vol. 11, no. 16, pp. 5937-5944, Nov. 2014. https://doi.org/10.12733/jics20104912
- Q. L. Wu and C. Y. Peng. "Wind power grid connected capacity prediction using LSSVM optimized by the bat algorithm," Energies, vol. 8, no. 12, pp. 14346-14360, Dec. 2015. https://doi.org/10.3390/en81212428
- J. L. Lou, H. Cao, B. Song, and J. Z. Xiao. "An output power prediction method for multiple wind farms under energy internet environment," International Journal of Grid and Distributed Computing, vol. 9, no. 11, pp. 273-284, Nov. 2016.
- T. H. Ouyang, X. M. Zha, and L. Qin. "A combined multivariate model for wind power prediction," Energy Conversion & Management, vol. 144, pp. 361-373, Jul. 2017. https://doi.org/10.1016/j.enconman.2017.04.077
- G. B. Huang, Q. Y. Zhu, and C. K. Siew. "Extreme learning machine: theory and applications," Neurocomputing, vol. 70, no. 1-3, pp. 489-501, Dec. 2006. https://doi.org/10.1016/j.neucom.2005.12.126
- Y. Lan, Y. C. Soh, and G. B. Huang. "Two-stage extreme learning machine for regression," Neurocomputing, vol. 73, no. 16, pp. 3028-3038, Oct. 2010. https://doi.org/10.1016/j.neucom.2010.07.012
- G. B. Huang, H. M. Zhou, X. J. Ding, and R. Zhang. "Extreme learning machine for regression and multiclass classification," IEEE Transactions Systems Man and Cybernetics Part B-Cybernetics," vol. 42, no. 2, pp. 513-529, Apr. 2012. https://doi.org/10.1109/TSMCB.2011.2168604
- C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong. "Probabilistic forecasting of wind power generation using extreme learning machine," IEEE Transactions on Power Systems, vol. 29, no. 3, pp. 1033-1044, May. 2014. https://doi.org/10.1109/TPWRS.2013.2287871
- G. Y. Zhang, Y. G. Wu, K. P. Wong, Z. Xu, Z. Y. Dong, and H. H. C. Lu. "An advanced approach for construction of optimal wind power prediction intervals," IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2706-2715, Sep. 2015. https://doi.org/10.1109/TPWRS.2014.2363873
- N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zhang, N. C. Yen, and C. C. Tung. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings Mathematical Physical & Engineering Sciences, vol. 454, no. 1971, pp. 903-995, Mar. 1998. https://doi.org/10.1098/rspa.1998.0193
- S. C. Du, T. Liu, D. L. Huang, and G. L. Li. "An optimal ensemble empirical mode decomposition method for vibration signal decomposition," Journal of Vibration & Acoustics, vol. 139, no. 3, 031003, Jun. 2017. https://doi.org/10.1115/1.4035480