DOI QR코드

DOI QR Code

Microleakage and Shear Bond Strength of Biodentine at Different Setting Time

BiodentineTM의 경화시간에 따른 미세누출과 전단결합강도

  • Song, Yong Ho (Department of Pediatric Dentistry, School of Dentistry, Chosun University) ;
  • Lee, Nanyoung (Department of Pediatric Dentistry, School of Dentistry, Chosun University) ;
  • Lee, Sangho (Department of Pediatric Dentistry, School of Dentistry, Chosun University) ;
  • Jih, Myeongkwan (Department of Pediatric Dentistry, School of Dentistry, Chosun University)
  • 송용호 (조선대학교 치과대학 소아치과학교실) ;
  • 이난영 (조선대학교 치과대학 소아치과학교실) ;
  • 이상호 (조선대학교 치과대학 소아치과학교실) ;
  • 지명관 (조선대학교 치과대학 소아치과학교실)
  • Received : 2017.11.08
  • Accepted : 2017.12.05
  • Published : 2018.08.31

Abstract

The purposes of this study were to evaluate microleakage of Biodentine, one of the tricalcium silicate based pulp-capping materials, and to compare the shear bond strength between composite resin and Biodentine with different setting times. For microleakage evaluation, 70 bovine teeth were used. Cavities were formed on the labial surfaces and filled with Biodentine. The teeth were divided into seven groups, each consisting of 10 teeth. The specimens were prepared by applying the composite resin on the upper side after different setting times. To evaluate shear bond strength, 210 acrylic resin blocks with central grooves were prepared, and the grooves were filled with Biodentine. The acrylic resin blocks were divided into seven groups of 30 specimens each, and the specimens were prepared by applying the composite resin on the upper side after different setting times. In samples with setting time of 24 hours or longer period, the microleakage between composite resin and Biodentine was reduced significantly while the shear bond strength increased to offset the polymerization shrinkage of the composite resin. Setting Biodentine for more than 24 hours before composite resin restoration would lead to more favorable clinical result.

이 연구의 목적은 mineral tiroxide aggregate의 긴 경화시간과 치아변색 등의 단점으로 인해 이를 대체하고자 최근 주목받고 있는 재료인 tricalcium silicate를 기반으로 한 치수복조제 중 Biodentine의 미세누출과 최종수복제로 가장 많이 쓰이는 composite resin간의 전단결합강도에 대하여 경화시간에 따른 차이를 비교 평가하는 것이다. 미세누출 평가를 위해 소 치아 70개를 이용하여 순면에 와동을 형성한 후 Biodentine을 충전하고 무작위로 10개씩 하위 군으로 나누어 12분, 45분, 24시간, 48시간, 1주일, 2주일, 1개월로 경화시간을 달리한 후 상방에 composite resin을 적용하여 시편을 제작하였다. 미세누출 평가를 위해 표본을 24시간 동안 0.5% fuchsin 용액에 침적한 뒤, 수세하고 건조하여 각 표본을 수주 하 디스크를 이용해 절반으로 나누어 20배의 비율로 실체현미경(Olympus SZ61, Olympus, Tokyo, Japan)을 사용하여 관찰하였다. 전단결합강도 평가를 위해 중심구를 가진 아크릴 레진 블록을 210개를 제작하고 중심구에 Biodentine을 채운 후 각각 30개씩 7개 군으로 나누어 12분, 45분, 24시간, 48시간, 1주일, 2주일, 1개월 경화시간 경과 후 상방에 composite resin을 적용하여 시편을 제작하였다. Universal testing machine을 이용하여 경화시간에 따른 전단결합강도를 측정하였다. 연구결과, 미세누출에 있어서 24시간 이상 Biodentine 경화 후 상방에 composite resin 수복을 시행한 경우 미세누출을 최소화 하는 것으로 나타났다. 또한 전단결합강도에 있어서도 Biodentine의 경화시간이 24시간 이상일 경우 composite resin의 중합수축을 상쇄할 수 있는 전단결합강도가 측정되었다. composite resin 수복 전 Biodentine을 24시간 이상 경화시키는 것이 임상적으로 더 나은 결과를 나타낼 것이다.

Keywords

References

  1. Akhlaghi N, Khademi A : Outcomes of vital pulp therapy in permanent teeth with different medicaments based on review of the literature. Dent Res J, 12:406-417, 2015. https://doi.org/10.4103/1735-3327.166187
  2. Cantekin K : Bond strength of different restorative materials to light-curable mineral trioxide aggregate. J Clin Pediatr Dent, 39:143-148, 2015. https://doi.org/10.17796/jcpd.39.2.84x57tp110k46183
  3. Gulati S, Shenoy VU, Margasahayam SV : Comparison of shear bond strength of resin-modified glass ionomer to conditioned and unconditioned mineral trioxide aggregate surface: An in vitro study. J Conserv Dent, 17:440-443, 2014. https://doi.org/10.4103/0972-0707.139832
  4. Ajami AA, Jafari Navimipour E, Daneshpooy M, et al. : Comparison of shear bond strength of resin-modified glass ionomer and composite resin to three pulp capping agents. J Dent Res Dent Clin Dent Prospects, 7:164-168, 2013.
  5. Nowicka A, Lipski M, Radlinska J, et al. : Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J Endod, 39:743-747, 2013. https://doi.org/10.1016/j.joen.2013.01.005
  6. Cantekin K, Avci S : Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement ($Biodentine^{(R)}$). J Appl Oral Sci, 22:302-306, 2014. https://doi.org/10.1590/1678-775720130660
  7. Rajasekharan S, Martens LC, Cauwels RG, Verbeeck RM : $Biodentine^{TM}$ material characteristics and clinical applications: a review of the literature. Eur Arch Paediatr Dent, 15: 147-158, 2014. https://doi.org/10.1007/s40368-014-0114-3
  8. Arora V, Nikhil V, Sharma N, Arora P : Bioactive dentin replacement. IOSR-JDMS, 12:52-57, 2013. https://doi.org/10.9790/0853-1215255
  9. Kusum B, Rakesh K, Richa K : Clinical and radiographical evaluation of mineral trioxide aggregate, biodentine and propolis as pulpotomy medicaments in primary teeth. Restor Dent Endod, 40:276-285, 2015. https://doi.org/10.5395/rde.2015.40.4.276
  10. Septodont : $Biodentine^{(R)}$ - Bioactive Dentin Substitute. Available frome URL: http://www.septodontusa.com/products/biodentine (Accessed on September 20, 2017).
  11. Raskin A, Eschrich G, Dejou J, About I : In vitro microleakage of Biodentine as a dentin substitute compared to Fuji II LC in cervical lining restorations. J Adhes Dent, 14:535-542, 2012.
  12. Hashem DF, Foxton R, Banerjee A, et al. : The physical characteristics of resin composite-calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater, 30:343-349, 2014. https://doi.org/10.1016/j.dental.2013.12.010
  13. Grech L, Mallia B, Camilleri J : Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater, 29:e20-28, 2013.
  14. Villat C, Tran XV, Colon P, et al. : Impedance methodology: A new way to characterize the setting reaction of dental cements. Dent Mater, 26:1127-1132, 2010. https://doi.org/10.1016/j.dental.2010.07.013
  15. Malkondu O, Karapinar Kazandag M, Kazazoglu E : A review on biodentine, a contemporary dentine replacement and repair material. Biomed Res Int, 2014:160951, 2014.
  16. Odabas ME, Bani M, Tirali RE : Shear bond strengths of different adhesive systems to biodentine. Scientific World Journal, 2013:626103, 2013.
  17. Yesilyurt C, Yildirim T, Tasdemir T, Kusgoz A : Shear bond strength of conventional glass ionomer cements bound to mineral trioxide aggregate. J Endod, 35:1381-1383, 2009. https://doi.org/10.1016/j.joen.2009.06.003
  18. Bachoo IK, Seymour D, Brunton P : A biocompatible and bioactive replacement for dentine: is this a reality? The properties and uses of a novel calcium-based cement. Br Dent J, 214:E5, 2013. https://doi.org/10.1038/sj.bdj.2013.57
  19. Bayrak S, Tunc ES, Saroglu I, Egilmez T : Shear bond strengths of different adhesive systems to white mineral trioxide aggregate. Dent Mater J, 28:62-67, 2009. https://doi.org/10.4012/dmj.28.62
  20. McLean JW, Powis DR, Prosser HJ, Wilson AD : The use of glass-ionomer cements in bonding composite resins to dentine. Br Dent J, 158:410-414, 1985. https://doi.org/10.1038/sj.bdj.4805621
  21. Grech L, Mallia B, Camilleri J : Characterization of set Intermediate Restorative Material, Biodentine, Bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J, 46:632-641, 2013. https://doi.org/10.1111/iej.12039
  22. Jeong HK, Lee NY, Lee SH : Comparison of Shear Bond Strength of Different Restorative Materials to Tricalcium Silicate-Based Pulp Capping Materials. J Korean Acad Pediatr Dent, 44:200-209, 2017.
  23. Borkar SA, Ataide I : Biodentine pulpotomy several days after pulp exposure: Four case reports. J Conserv Dent, 18: 73-78, 2015. https://doi.org/10.4103/0972-0707.148901
  24. Villat C, Grosgogeat B, Seux D, Farge P : Conservative approach of a symptomatic carious immature permanent tooth using a tricalcium silicate cement (Biodentine): a case report. Restor Dent Endod, 38:258-262, 2013. https://doi.org/10.5395/rde.2013.38.4.258
  25. Niranjan B, Shashikiran ND, Maran S, et al. : A comparative microleakage evaluation of three different base materials in Class I cavity in deciduous molars in sandwich technique using dye penetration and dentine surface interface by scanning electron microscope. J Indian Soc Pedod Prev Dent, 34:324-330, 2016. https://doi.org/10.4103/0970-4388.191410
  26. Raskin A, Eschrich G, Dejou J, About I : In vitro microleakage of Biodentine as a dentin substitute compared to Fuji II LC in cervical lining restorations. J Adhes Dent, 14:535-542, 2012.
  27. Solomon RV, Karunakar P, Grandhala DS, Byragoni C : Sealing ability of a new calcium silicate based material as a dentin substitute in class II sandwich restorations: An in vitro study. J Oral Res Rev, 6:1-8, 2014. https://doi.org/10.4103/2249-4987.140193
  28. Jensen AL, Abbott PV, Castro Salgado J : Interim and temporary restoration of teeth during endodontic treatment. Aust Dent J, 52:S83-99, 2007. https://doi.org/10.1111/j.1834-7819.2007.tb00528.x
  29. Khetarpal A, Chaudhary S, Verma M, et al. : Revascularization of immature permanent tooth with periapical lesion using a new biomaterial - A case report. Int J Dent Sci Res, 1:20-22, 2013. https://doi.org/10.1016/j.ijdsr.2013.04.004