DOI QR코드

DOI QR Code

Necroptosis Is a Mechanism of Death in Mouse Induced Hepatocyte-Like Cells Reprogrammed from Mouse Embryonic Fibroblasts

  • Lee, Yun-Suk (Hauul Bio Incorporation) ;
  • Park, Kyung-Mee (College of Veterinary Medicine, Chungbuk National University) ;
  • Yu, Lina (College of Veterinary Medicine, Kangwon National University) ;
  • Kwak, Ho-Hyun (College of Veterinary Medicine, Kangwon National University) ;
  • Na, Hee-Jun (Hauul Bio Incorporation) ;
  • Kang, Kyung-Sun (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Woo, Heung-Myong (College of Veterinary Medicine, Kangwon National University)
  • Received : 2017.12.10
  • Accepted : 2018.06.05
  • Published : 2018.07.31

Abstract

Liver transplantation is recommended for patients with liver failure, but liver donors are limited. This necessitates the development of artificial livers, and hepatocytes are necessary to develop such artificial livers. Although induced hepatocyte-like cells are used in artificial livers, the characteristics of mouse induced hepatocyte-like cells (miHeps) reprogrammed with embryonic fibroblasts have not yet been clarified. Therefore, this study investigated the mechanisms underlying the survival, function, and death of miHeps. miHeps showed decreased cell viability, increased cytotoxicity, decreased hepatic function, and albumin and urea secretion at passage 14. Addition of necrostatin-1 (NEC-1) to miHeps inhibited necrosome formation and reactive oxygen species generation and increased cell survival. However, NEC-1 did not affect the hepatic function of miHeps. These results provide a basis for development of artificial livers using hepatocytes.

Keywords

References

  1. Afonso, M.B., Rodrigues, P.M., Carvalho, T., Caridade, M., Borralho, P., Cortez-Pinto, H., Castro, R.E., and Rodrigues, C.M. (2015). Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin. Sci. 129, 721-739. https://doi.org/10.1042/CS20140732
  2. Arshad, M.I., Piquet-Pellorce, C., Filliol, A., L'Helgoualc'h, A., Lucas-Clerc, C., Jouan-Lanhouet, S., Dimanche-Boitrel, M.T., and Samson, M. (2015). The chemical inhibitors of cellular death, PJ34 and Necrostatin-1, down-regulate IL-33 expression in liver. J. Mol. Med. 93, 867-878. https://doi.org/10.1007/s00109-015-1270-6
  3. Cho, Y.S. (2014). Perspectives on the therapeutic modulation of an alternative cell death, programmed necrosis (review). Int. J. Mol. Med. 33, 1401-1406. https://doi.org/10.3892/ijmm.2014.1716
  4. Cho, Y.S., and Park, H.L. (2017). Exploitation of necroptosis for treatment of caspase-compromised cancers. Oncol. Lett. 14, 1207-1214. https://doi.org/10.3892/ol.2017.6285
  5. Dasarathy, S. (2012). Consilience in sarcopenia of cirrhosis. J. Cachexia, Sarcopenia Muscle 3, 225-237. https://doi.org/10.1007/s13539-012-0069-3
  6. Dienstag, J.L., and Cosimi, A.B. (2012). Liver transplantation--a vision realized. N. Eng. J. Med. 367, 1483-1485. https://doi.org/10.1056/NEJMp1210159
  7. Hannoun, Z., Steichen, C., Dianat, N., Weber, A., and Dubart-Kupperschmitt, A. (2016). The potential of induced pluripotent stem cell derived hepatocytes. J. Hepatol. 65, 182-199. https://doi.org/10.1016/j.jhep.2016.02.025
  8. Ho, C.M., Lee, P.H., Cheng, W.T., Hu, R.H., Wu, Y.M., and Ho, M.C. (2016). Succinct guide to liver transplantation for medical students. Ann. Med. Surg. 12, 47-53. https://doi.org/10.1016/j.amsu.2016.11.004
  9. Hussein, K.H., Park, K.M., Kang, K.S., and Woo, H.M. (2016). Heparin-gelatin mixture improves vascular reconstruction efficiency and hepatic function in bioengineered livers. Acta Biomater. 38, 82-93. https://doi.org/10.1016/j.actbio.2016.04.042
  10. Kang, K., Kim, Y., Lee, S.B., Kim, J.S., Park, S., Kim, W.D., Yang, H.M., Kim, S.J., Jeong, J., and Choi, D. (2017). Three-dimensional bioprinting of hepatic structures with direct-converted hepatocyte-like cells. Tissue Engineering. Part A.
  11. Kim, S.J., and Lee, S.M. (2017). Necrostatin-1 Protects Against DGalactosamine and Lipopolysaccharide-Induced Hepatic Injury by Preventing TLR4 and RAGE Signaling. Inflammation 40, 1912-1923. https://doi.org/10.1007/s10753-017-0632-3
  12. Leberfinger, A.N., Ravnic, D.J., Dhawan, A., and Ozbolat, I.T. (2017). Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl. Med. 6, 1940-1948. https://doi.org/10.1002/sctm.17-0148
  13. Li, S., Guo, J., Ying, Z., Chen, S., Yang, L., Chen, K., Long, Q., Qin, D., Pei, D., and Liu, X. (2015). Valproic acid-induced hepatotoxicity in Alpers syndrome is associated with mitochondrial permeability transition pore opening-dependent apoptotic sensitivity in an induced pluripotent stem cell model. Hepatology 61, 1730-1739. https://doi.org/10.1002/hep.27712
  14. Luo, Y., Lou, C., Zhang, S., Zhu, Z., Xing, Q., Wang, P., Liu, T., Liu, H., Li, C., Shi, W., et al. (2017). Three-dimensional hydrogel culture conditions promote the differentiation of human induced pluripotent stem cells into hepatocytes. Cytotherapy 20, 95-107.
  15. Masuoka, H.C., Guicciardi, M.E., and Gores, G.J. (2009). Caspase inhibitors for the treatment of hepatitis C. Clin. Liver Dis. 13, 467-475. https://doi.org/10.1016/j.cld.2009.05.010
  16. Park, K.M., Hussein, K.H., Hong, S.H., Ahn, C., Yang, S.R., Park, S.M., Kweon, O.K., Kim, B.M., and Woo, H.M. (2016). Decellularized liver extracellular matrix as promising tools for transplantable bioengineered liver promotes hepatic lineage commitments of induced pluripotent stem cells. Tissue Eng. Part A 22, 449-460. https://doi.org/10.1089/ten.tea.2015.0313
  17. Sakiyama, R., Blau, B.J., and Miki, T. (2017). Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells. World J. Gastroenterol. 23, 1974-1979. https://doi.org/10.3748/wjg.v23.i11.1974
  18. Seo, M.J., Hong, J.M., Kim, S.J., and Lee, S.M. (2017). Genipin protects d-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the necroptosis-mediated inflammasome signaling. Eur. J. Pharmacol. 812, 128-137. https://doi.org/10.1016/j.ejphar.2017.07.024
  19. Takemoto, K., Hatano, E., Iwaisako, K., Takeiri, M., Noma, N., Ohmae, S., Toriguchi, K., Tanabe, K., Tanaka, H., Seo, S., et al. (2014). Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver failure. FEBS Open Bio. 4, 777-787. https://doi.org/10.1016/j.fob.2014.08.007
  20. Wang, B., Jakus, A.E., Baptista, P.M., Soker, S., Soto-Gutierrez, A., Abecassis, M.M., Shah, R.N., and Wertheim, J.A. (2016). Functional maturation of induced pluripotent stem cell hepatocytes in extracellular matrix-A comparative analysis of bioartificial liver microenvironments. Stem Cell Transl. Med. 5, 1257-1267. https://doi.org/10.5966/sctm.2015-0235
  21. Wang, Y., Nicolas, C.T., Chen, H.S., Ross, J.J., De Lorenzo, S.B., and Nyberg, S.L. (2017). Recent advances in decellularization and recellularization for tissue-engineered liver grafts. Cells Tissues Organs 204, 125-136. https://doi.org/10.1159/000479597
  22. Zarrinpar, A., and Busuttil, R.W. (2013). Liver transplantation: past, present and future. Nat. Rev. Gastroenterol. Hepatol. 10, 434-440. https://doi.org/10.1038/nrgastro.2013.88

Cited by

  1. Experimental Applications of in situ Liver Perfusion Machinery for the Study of Liver Disease vol.42, pp.1, 2018, https://doi.org/10.14348/molcells.2018.0330
  2. Guidelines for evaluating myocardial cell death vol.317, pp.5, 2018, https://doi.org/10.1152/ajpheart.00259.2019