DOI QR코드

DOI QR Code

Oleanolic Acids Inhibit Vascular Endothelial Growth Factor Receptor 2 Signaling in Endothelial Cells: Implication for Anti-Angiogenic Therapy

  • Lee, Da-Hye (Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University) ;
  • Lee, Jungsul (Department of Bio and Brain Engineering, KAIST) ;
  • Jeon, Jongwook (The Korean Research Institute of Science, Technology and Civilization, Chonbuk National University) ;
  • Kim, Kyung-Jin (Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University) ;
  • Yun, Jang-Hyuk (Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University) ;
  • Jeong, Han-Seok (Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University) ;
  • Lee, Eun Hui (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Koh, Young Jun (Department of Pathology, College of Korean Medicine, Dongguk University) ;
  • Cho, Chung-Hyun (Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University)
  • Received : 2018.05.14
  • Accepted : 2018.06.20
  • Published : 2018.08.31

Abstract

Angiogenesis must be precisely controlled because uncontrolled angiogenesis is involved in aggravation of disease symptoms. Vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR-2) signaling is a key pathway leading to angiogenic responses in vascular endothelial cells (ECs). Therefore, targeting VEGF/VEGFR-2 signaling may be effective at modulating angiogenesis to alleviate various disease symptoms. Oleanolic acid was verified as a VEGFR-2 binding chemical from anticancer herbs with similar binding affinity as a reference drug in the Protein Data Bank (PDB) entry 3CJG of model A coordination. Oleanolic acid effectively inhibited VEGF-induced VEGFR-2 activation and angiogenesis in HUVECs without cytotoxicity. We also verified that oleanolic acid inhibits in vivo angiogenesis during the development and the course of the retinopathy of prematurity (ROP) model in the mouse retina. Taken together, our results suggest a potential therapeutic benefit of oleanolic acid for inhibiting angiogenesis in proangiogenic diseases, including retinopathy.

Keywords

References

  1. Adamis, A.P., Miller, J.W., Bernal, M.T., D'Amico, D.J., Folkman, J., Yeo, T.K., and Yeo, K.T. (1994). Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118, 445-450. https://doi.org/10.1016/S0002-9394(14)75794-0
  2. Aiello, L.P. (2005). Angiogenic pathways in diabetic retinopathy. N Eng. J. Med. 353, 839-841. https://doi.org/10.1056/NEJMe058142
  3. Aiello, L.P., Avery, R.L., Arrigg, P.G., Keyt, B.A., Jampel, H.D., Shah, S.T., Pasquale, L.R., Thieme, H., Iwamoto, M.A., Park, J.E., et al. (1994). Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Eng. J. Med. 331, 1480-1487. https://doi.org/10.1056/NEJM199412013312203
  4. Arevalo, J.F., Sanchez, J.G., Wu, L., Maia, M., Alezzandrini, A.A., Brito, M., Bonafonte, S., Lujan, S., Diaz-Llopis, M., Restrepo, N., et al. (2009a). Primary intravitreal bevacizumab for diffuse diabetic macular edema: the Pan-American Collaborative Retina Study Group at 24 months. Ophthalmology 116, 1488-1497, 1497 e1481. https://doi.org/10.1016/j.ophtha.2009.03.016
  5. Arevalo, J.F., Wu, L., Sanchez, J.G., Maia, M., Saravia, M.J., Fernandez, C.F., and Evans, T. (2009b). Intravitreal bevacizumab (Avastin) for proliferative diabetic retinopathy: 6-months follow-up. Eye (Lond) 23, 117-123. https://doi.org/10.1038/sj.eye.6702980
  6. Avery, R.L., Pieramici, D.J., Rabena, M.D., Castellarin, A.A., Nasir, M.A., and Giust, M.J. (2006). Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113, 363-372 e365. https://doi.org/10.1016/j.ophtha.2005.11.019
  7. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235-242. https://doi.org/10.1093/nar/28.1.235
  8. Bernatchez, P.N., Soker, S., and Sirois, M.G. (1999). Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. J. Biol. Chem. 274, 31047-31054. https://doi.org/10.1074/jbc.274.43.31047
  9. Bikfalvi, A. (2004). Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor-4 and the VEGF/VEGFR system. Biochem. Pharmacol. 68, 1017-1021. https://doi.org/10.1016/j.bcp.2004.05.030
  10. Buschini, E., Piras, A., Nuzzi, R., and Vercelli, A. (2011). Age related macular degeneration and drusen: neuroinflammation in the retina. Prog. Neurobiol. 95, 14-25. https://doi.org/10.1016/j.pneurobio.2011.05.011
  11. Chen, C.Y. (2011). TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening in silico. PLoS One 6, e15939. https://doi.org/10.1371/journal.pone.0015939
  12. Chen, J., Connor, K.M., Aderman, C.M., and Smith, L.E. (2008). Erythropoietin deficiency decreases vascular stability in mice. J. Clin. Invest. 118, 526-533.
  13. Connor, K.M., SanGiovanni, J.P., Lofqvist, C., Aderman, C.M., Chen, J., Higuchi, A., Hong, S., Pravda, E.A., Majchrzak, S., Carper, D., et al. (2007). Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med. 13, 868-873. https://doi.org/10.1038/nm1591
  14. Demircan, N., Safran, B.G., Soylu, M., Ozcan, A.A., and Sizmaz, S. (2006). Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (Lond) 20, 1366-1369. https://doi.org/10.1038/sj.eye.6702138
  15. Ellis, L.M., and Hicklin, D.J. (2008). VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579-591. https://doi.org/10.1038/nrc2403
  16. Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocrine Rev. 25, 581-611. https://doi.org/10.1210/er.2003-0027
  17. Ferrara, N., and Kerbel, R.S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967-974. https://doi.org/10.1038/nature04483
  18. Ferrara, N., Hillan, K.J., Gerber, H.P., and Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Dis. 3, 391-400. https://doi.org/10.1038/nrd1381
  19. Gariano, R.F., and Gardner, T.W. (2005). Retinal angiogenesis in development and disease. Nature 438, 960-966. https://doi.org/10.1038/nature04482
  20. Gerber, H.P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B.A., Dixit, V., and Ferrara, N. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30336-30343. https://doi.org/10.1074/jbc.273.46.30336
  21. Gologorsky, D., Thanos, A., and Vavvas, D. (2012). Therapeutic interventions against inflammatory and angiogenic mediators in proliferative diabetic retinopathy. Med. Inflammation 2012, 629452.
  22. Hanahan, D., and Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364. https://doi.org/10.1016/S0092-8674(00)80108-7
  23. Hellstrom, A., Smith, L.E.H., and Dammann, O. (2013). Retinopathy of prematurity. Lancet 382, 1445-1457. https://doi.org/10.1016/S0140-6736(13)60178-6
  24. Holash, J., Davis, S., Papadopoulos, N., Croll, S.D., Ho, L., Russell, M., Boland, P., Leidich, R., Hylton, D., Burova, E., et al. (2002). VEGFTrap: a VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 99, 11393-11398. https://doi.org/10.1073/pnas.172398299
  25. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Eng. J. Med. 350, 2335-2342. https://doi.org/10.1056/NEJMoa032691
  26. Jeong, D.W., Kim, Y.H., Kim, H.H., Ji, H.Y., Yoo, S.D., Choi, W.R., Lee, S.M., Han, C.K., and Lee, H.S. (2007). Dose-linear pharmacokinetics of oleanolic acid afterIntravenous and oral administration in rats. Biopharm. Drug Dispos. 28, 51-57 https://doi.org/10.1002/bdd.530
  27. Krady, J.K., Basu, A., Allen, C.M., Xu, Y., LaNoue, K.F., Gardner, T.W., and Levison, S.W. (2005). Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54, 1559-1565. https://doi.org/10.2337/diabetes.54.5.1559
  28. Laszczyk, M.N. (2009). Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Medica 75, 1549-1560. https://doi.org/10.1055/s-0029-1186102
  29. Lee, J., Kim, K.E., Choi, D.K., Jang, J.Y., Jung, J.J., Kiyonari, H., Shioi, G., Chang, W., Suda, T., Mochizuki, N., et al. (2013). Angiopoietin-1 guides directional angiogenesis through integrin alphavbeta5 signaling for recovery of ischemic retinopathy. Sci. Transl. Med. 5, 203ra127.
  30. Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., and Ferrara, N. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306-1309. https://doi.org/10.1126/science.2479986
  31. Liu, J. (1995). Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 49, 57-68. https://doi.org/10.1016/0378-8741(95)90032-2
  32. Liu, J., Wu, Q., Lu, Y.F., and Pi, J. (2008). New insights into generalized hepatoprotective effects of oleanolic acid: key roles of metallothionein and Nrf2 induction. Biochem. Pharmacol. 76, 922-928. https://doi.org/10.1016/j.bcp.2008.07.021
  33. Micieli, J.A., Surkont, M., and Smith, A.F. (2009). A systematic analysis of the off-label use of bevacizumab for severe retinopathy of prematurity. Am. J. Ophthalmol. 148, 536-543 e532. https://doi.org/10.1016/j.ajo.2009.05.031
  34. Mocan, M.C., Kadayifcilar, S., and Eldem, B. (2006). Elevated intravitreal interleukin-6 levels in patients with proliferative diabetic retinopathy. Canadian journal of ophthalmology. J. Canadien d'ophtalmologie 41, 747-752. https://doi.org/10.3129/i06-070
  35. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785-2791. https://doi.org/10.1002/jcc.21256
  36. Ng, E.W., Shima, D.T., Calias, P., Cunningham, E.T., Jr., Guyer, D.R., and Adamis, A.P. (2006). Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Dis. 5, 123-132. https://doi.org/10.1038/nrd1955
  37. O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R. (2011). Open Babel: An open chemical toolbox. J. Cheminform. 3, 33. https://doi.org/10.1186/1758-2946-3-33
  38. Olsson, A.K., Dimberg, A., Kreuger, J., and Claesson-Welsh, L. (2006). VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359-371. https://doi.org/10.1038/nrm1911
  39. Petronelli, A., Pannitteri, G., and Testa, U. (2009). Triterpenoids as new promising anticancer drugs. Anti-cancer Drugs 20, 880-892. https://doi.org/10.1097/CAD.0b013e328330fd90
  40. Pollier, J., and Goossens, A. (2012). Oleanolic acid. Phytochemistry 77, 10-15. https://doi.org/10.1016/j.phytochem.2011.12.022
  41. Raju, T.N., Langenberg, P., Bhutani, V., and Quinn, G.E. (1997). Vitamin E prophylaxis to reduce retinopathy of prematurity: a reappraisal of published trials. J. Pediatr. 131, 844-850. https://doi.org/10.1016/S0022-3476(97)70031-3
  42. Reddy, A.S., Pati, S.P., Kumar, P.P., Pradeep, H.N., and Sastry, G.N. (2007). Virtual screening in drug discovery -- a computational perspective. Curr. Protein Pept. Sci. 8, 329-351. https://doi.org/10.2174/138920307781369427
  43. Reisman, S.A., Aleksunes, L.M., and Klaassen, C.D. (2009). Oleanolic acid activates Nrf2 and protects from acetaminophen hepatotoxicity via Nrf2-dependent and Nrf2-independent processes. Biochem. Pharmacol. 77, 1273-1282. https://doi.org/10.1016/j.bcp.2008.12.028
  44. Rothova, A., Suttorp-van Schulten, M.S., Frits Treffers, W., and Kijlstra, A. (1996). Causes and frequency of blindness in patients with intraocular inflammatory disease. Br. J. Ophthalmol. 80, 332-336. https://doi.org/10.1136/bjo.80.4.332
  45. Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., et al. (2014). TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 6, 13. https://doi.org/10.1186/1758-2946-6-13
  46. Sapieha, P., Joyal, J.S., Rivera, J.C., Kermorvant-Duchemin, E., Sennlaub, F., Hardy, P., Lachapelle, P., and Chemtob, S. (2010). Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J. Clin. Invest. 120, 3022-3032. https://doi.org/10.1172/JCI42142
  47. Sato, T., Kusaka, S., Shimojo, H., and Fujikado, T. (2009). Vitreous levels of erythropoietin and vascular endothelial growth factor in eyes with retinopathy of prematurity. Ophthalmology 116, 1599-1603. https://doi.org/10.1016/j.ophtha.2008.12.023
  48. Sennino, B., and McDonald, D.M. (2012). Controlling escape from angiogenesis inhibitors. Nat. Rev. Cancer 12, 699-709. https://doi.org/10.1038/nrc3366
  49. Shoichet, B.K. (2004). Virtual screening of chemical libraries. Nature 432, 862-865. https://doi.org/10.1038/nature03197
  50. Sohn, K.H., Lee, H.Y., Chung, H.Y., Young, H.S., Yi, S.Y., and Kim, K.W. (1995). Anti-angiogenic activity of triterpene acids. Cancer Lett. 94, 213-218. https://doi.org/10.1016/0304-3835(95)03856-R
  51. Takada, K., Nakane, T., Masuda, K., and Ishii, H. (2010). Ursolic acid and oleanolic acid, members of pentacyclic triterpenoid acids, suppress TNF-alpha-induced E-selectin expression by cultured umbilical vein endothelial cells. Phytomedicine 17, 1114-1119. https://doi.org/10.1016/j.phymed.2010.04.006
  52. Tang, J., and Kern, T.S. (2011). Inflammation in diabetic retinopathy. Prog. Retinal Eye Res. 30, 343-358. https://doi.org/10.1016/j.preteyeres.2011.05.002
  53. Trott, O., and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461.
  54. Villacampa, P., Menger, K.E., Abelleira, L., Ribeiro, J., Duran, Y., Smith, A.J., Ali, R.R., Luhmann, U.F., and Bainbridge, J.W.B. (2017). Accelerated oxygen-induced retinopathy is a reliable model of ischemia-induced retinal neovascularization. PLoS One 12, e0179759. https://doi.org/10.1371/journal.pone.0179759
  55. Wells, J.A., Murthy, R., Chibber, R., Nunn, A., Molinatti, P.A., Kohner, E.M., and Gregor, Z.J. (1996). Levels of vascular endothelial growth factor are elevated in the vitreous of patients with subretinal neovascularisation. Br. J. Ophthalmol. 80, 363-366. https://doi.org/10.1136/bjo.80.4.363
  56. Yamamoto, Y., Matsui, J., Matsushima, T., Obaishi, H., Miyazaki, K., Nakamura, K., Tohyama, O., Semba, T., Yamaguchi, A., Hoshi, S.S., et al. (2014). Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vascular Cell 6, 18. https://doi.org/10.1186/2045-824X-6-18
  57. Yun, J.H., Park, S.W., Kim, K.J., Bae, J.S., Lee, E.H., Paek, S.H., Kim, S.U., Ye, S., Kim, J.H., and Cho, C.H. (2017). Endothelial STAT3 Activation Increases Vascular Leakage Through Downregulating Tight Junction Proteins: Implications for Diabetic Retinopathy. J. Cell. Physiol. 232, 1123-1134. https://doi.org/10.1002/jcp.25575
  58. Yun, J.H., Jeong, H.S., Kim, K.J., Han, M.H., Lee, E.H., Lee, K., and Cho, C.H. (2018). ${\beta}$-Adrenergic receptor agonists attenuate pericyte loss in diabetic retinas through Akt activation. FASEB J. 32, 2324-2338. https://doi.org/10.1096/fj.201700570RR

Cited by

  1. TGR5 receptor activation attenuates diabetic retinopathy through suppression of RhoA/ROCK signaling vol.34, pp.3, 2018, https://doi.org/10.1096/fj.201902496rr
  2. Potential Effects of Nutraceuticals in Retinopathy of Prematurity vol.11, pp.2, 2018, https://doi.org/10.3390/life11020079
  3. The Potential Application of Pentacyclic Triterpenoids in the Prevention and Treatment of Retinal Diseases vol.87, pp.7, 2018, https://doi.org/10.1055/a-1377-2596
  4. Sodium tanshinone IIA sulfonate ameliorates cerebral ischemic injury through regulation of angiogenesis vol.22, pp.4, 2018, https://doi.org/10.3892/etm.2021.10556
  5. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System-A Comprehensive Update vol.11, pp.22, 2021, https://doi.org/10.3390/app112210806
  6. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action vol.145, pp.None, 2018, https://doi.org/10.1016/j.biopha.2021.112397