Acknowledgement
Supported by : 한국에너지기술평가원 (KETEP)
References
- ASHRAE (2002). ASHRAE Guideline 14-2002: Measurement of Energy and Demand Savings, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA
- Buchgraber, T., Shutin, D., & Poor, H. V. (2011). A sliding-window online fast variational sparse Bayesian learning algorithm, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2128-2131
- Burlutskiy, N., Petridis, M., Fish, A., Chernov, A., & Ali, N. (2016). An Investigation on Online Versus Batch Learning in Predicting User Behaviour, Research and Development in Intelligent Systems XXXIII. Springer
- Esteves, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized Mutual Information Feature Selection, IEEE Transaction on neural networks, 20(2), 189-201 https://doi.org/10.1109/TNN.2008.2005601
- Ferreira, P. M., & Ruano, A. E. (2009). Online Sliding-Window Methods for Process Model Adaptation, IEEE transactions on instrumentation and measurement, 58(9), 3012-3020 https://doi.org/10.1109/TIM.2009.2016818
- Foresee, F. D., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning, Proceedings of the International Conference on Neural Networks, 1930-1935.
- Igelnik, B., & Zurada, J. M. (2013). Efficiency and Scalability Methods for Computational Intellect, IGI Global
- Izzeldin, H., Asirvadam, V. S., & Saad, N. (2011). Online sliding-window based for training MLP networks using advanced conjugate gradient, 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, Penang, 112-116
- Jun, S. H. (2001). A New Statistical Sampling Method for Reducing Computing time of Machine Learning Algorithms, Journal of The Korean Institute of Intelligent Systems, 21(2), 171-177 https://doi.org/10.5391/JKIIS.2011.21.2.171
- Kim, Y. M., Ahn, K. U., & Park, C. S. (2016). Issues of Application of Machine Learning Models for Virtual and Real-Life Buildings, Sustainability, 8(6), 543 https://doi.org/10.3390/su8060543
- MacKay, D. J. C. (1992). Bayesian interpolation. Neural computation, 4(3), 415-447 https://doi.org/10.1162/neco.1992.4.3.415
- Oates, T., & Jensen, D. (1997). The Effects of Training Set Size on Decision Tree Complexity, ICML '97 Proceedings of the Fourteenth International Conference on Machine Learning, 254-262
- Pala, A. A. (2016). Online Machine Learning Techniques for predicting Operator Performance, Thesis, Technische Universitat Berlin
- Provost, F., Jensen, D., & Oates, T. (1999). Efficient progressive sampling, KDD '99 Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, 23-32
- Ra, S. J., Shin, H. S., Suh, W. J., Chu, H. G., & Park, C. S. (2017). Five Machine Learning Models for HVAC Systems in an Existing Office Building, Journal of the Architectural Institute of Korea Structure & Construction 33(10), 69-77 https://doi.org/10.5659/JAIK_SC.2017.33.10.69
- Solomatine, D. P., & Ostfeld, A. (2008). Data-driven modelling: some past experiences and new approaches, Journal of Hydroinformatics, 10(1), 3-22 https://doi.org/10.2166/hydro.2008.015
- Shannon, C. E. (1948). A Mathematical Theory of Communication, Bell System Technical Journal, 27(3), 379-423 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Suh, W. J., & Park C. S. (2016). Room air Temperature Prediction Model using Genetic Programming and BEMS Data, Journal of the Architectural Institute of Korea: Planning & Design, 30(1), 235-244
- Yoon, S. H., & Park C. S. (2014). x-Ray Approach to Develop Energy Model for Existing Building, Journal of the Architectural Institute of Korea: Planning & Design, 30(1), 235-244
- Yoon, S. H., Kim Y. J., & Park C. S. (2014). Bayesian Calibration of Energy Model for Existing Building, Journal of the Architectural Institute of Korea: Planning & Design, 30(10), 189-197