DOI QR코드

DOI QR Code

고기동 인공위성의 해석적 자세명령생성 기법 연구

Analytical Solution for Attitude Command Generation of Agile Spacecraft

  • 투고 : 2018.03.21
  • 심사 : 2018.07.31
  • 발행 : 2018.08.01

초록

본 논문은 인공위성의 자세명령을 해석적으로 생성하는 기법을 제안한다. 실제 위성에서는 1) 구동기 성능, 2) 위성체 유연구조, 3) 원격명령 데이터크기 등과 같은 제한조건들이 존재하고, 이로 인해 해석적인 자세명령 해를 구하기 어렵다. 따라서 본 논문에서는 고유축 회전, 프로파일 형상화를 통해 문제를 단순화하는 방법을 제안하고, 최종적으로 해석적 해를 유도하였다. 생성된 자세명령은 온-보드 자세제어기의 피드포워드 입력 형태로 사용되어 위성의 기동성을 높일 수 있다. 각속도 경계조건에 따라 rest-to-rest 기동과 spin-to-spin 기동으로 나누어 자세명령 해를 유도하였다. 시뮬레이션 예제를 통해 제안된 자세명령생성 기법이 구동기 제한조건을 지키면서 초기/최종 시간에서의 경계조건도 잘 만족하는 것을 확인하였다. 제안된 해석 해는 자세명령을 비교적 적은 수의 파라미터로 구현할 수 있어 원격명령 데이터크기 측면에서 경쟁력이 있다. 또한, 해석 해로 반복계산이 필요없어 온-보드 자세명령생성 자동화에도 기여할 수 있을 것으로 판단된다.

An analytical solution to generate attitude command profile for agile spacecraft is proposed. In realistic environment, obtaining analytical minimum-time optimal solution is very difficult because of following constraints-: 1) actuator saturation, 2) flexible mode excitation, 3) uplink command bandwidth limit. For that reasons, this paper applies two simplifications, an eigen-axis rotation and a finite-jerk approximated profile, to derive the solution in an analytical manner. The resulting attitude profile can be used as a feedforward or reference input to on-board attitude controller, and it can enhance spacecraft agility. Equations of attitude command profile are derived in two general boundary conditions: rest-to-rest maneuver and spin-to-spin maneuver. Simulation results demonstrate that the initial and final boundary conditions, in terms of time, attitude, and angular velocities, are well satisfied with the proposed analytical solution. The derived attitude command generation algorithm may be used to minimize a number of parameters to be uploaded to spacecraft or to automate a sequence of attitude command generation on-board.

키워드

참고문헌

  1. Wie, B., Bailey, C., and Heiberg, C., "Rapid Multitarget Acquisition and Pointing Control of Agile Spacecraft," Journal of Guidance, Control and Dynamics, Vol. 25, 2002, pp.96-104. https://doi.org/10.2514/2.4854
  2. Mok, S.-H., Jo, S., Bang, H., and Leeghim, H., "Heuristic Approach to Mission Planning Considering Attitude Maneuverability," APISAT, Nov. 16-18, Seoul, Korea, 2017, pp. 1630-1636.
  3. Gleyzes, M. A., Perret, L., and Kubik, P., "Pleiades System Architecture and Main Performances," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 39, 2012, pp. 537-542.
  4. Damilano, P., "Pleiades High Resolution Satellite: A Solution for Military and Civilian Needs in Metric-Class Optical Observation," 15th Annual/CSU Conference on Small Satellites, USA, 2004.
  5. Thieuw, A. and Marcille, H., "Pleiades-HR CMGs-Based Attitude Control System Design, Development Status and Performances," IFAC Proceedings Volume, Vol. 40, 2007, pp. 834-839.
  6. Jung, O.-C., Yim, H., Chung, D.-W., Kim, E.-K., and Kim, H.-J., "Analysis on Orbital Dynamics Operation Results of KOMPSAT-3 during Early Phase after Launch," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 4, 2013, pp. 319-326. https://doi.org/10.5139/JKSAS.2013.41.4.319
  7. Bialke, B., and Stromswold, E., "Reaction Wheel Actuator with Two Newton-Meter Torque Capability for Increased Spacecraft Agility," 6th International ESA Conference on Guidance, Navigation and Control Systems, Greece, 2006.
  8. Wie, B., Space Vehicle Dynamics and Control, AIAA Educational Series, AIAA, USA, 1998, pp.437-444
  9. Wie, B., Weiss, H., and Arapostathis, A., "Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations," Journal of Guidance, Control and Dynamics, Vol. 12, No. 3, 1989, pp.375-380. https://doi.org/10.2514/3.20418
  10. Wie, B., and Lu, J., "Feedback Control Logic for Spacecraft Eigenaxis Rotations Under Slew Rate and Control Constraints," Journal of Guidance, Control and Dynamics, Vol. 18, No. 6, 1995, pp.1372-1379. https://doi.org/10.2514/3.21555
  11. Styen, W. H., "Near-Minimum-Time Eigenaxis Rotation Maneuvers Using Reaction Wheels," Journal of Guidance, Control and Dynamics, Vol. 18, No. 5, 1995, pp.1184-1189. https://doi.org/10.2514/3.21523
  12. Liu, Q., and Wie, B., "Robust Time-Optimal Control of Uncertain Flexible Spacecraft," Journal of Guidance, Control and Dynamics, Vol. 15, No. 3, 1992, pp.597-604. https://doi.org/10.2514/3.20880
  13. Wie, B., and Liu, Q., "Comparison Between Robustified Feedforward and Feedback for Achieving Parameter Robustness," Journal of Guidance, Control and Dynamics, Vol. 15, No. 4, 1992, pp. 935-943. https://doi.org/10.2514/3.20927
  14. Junkins, J. L., and Turner, J. D., "Optimal Continuous Torques Attitude Maneuvers," AIAA/AAS Astrodynamics Conference, USA, 1978, AIAA-78-1400.
  15. Vadali, S. R., and Junkins, J. L., "Spacecraft Large Angle Rotational Maneuvers with Optimal Momentum Transfer," AIAA/AAS Astrodynaamics Conference, USA, 1982, AIAA-82-1469.
  16. Turner, J. D., and Junkins, J. L., "Optimal Large-Angle Single-Axis Rotational Maneuvers of Flexible Spacecraft," Journal of Guidance, Control and Dynamics, Vol. 3, No. 6, 1980, pp.578-585. https://doi.org/10.2514/3.56036
  17. Bang, H., Kim, J.-A., and Kim, M., "Optimal Reorientation Maneuver of Bias Momentum Spacecraft," Journal of Guidance, Control and Dynamics, Vol. 20, No. 6, 1997, pp.1076-1082. https://doi.org/10.2514/2.4188
  18. Lafontaine, J., and Peuvedic, C. L., "Autonomous Generation of Guidance Profiles for Constrained, Minimum-Time, Large-Angle Attitude Manoeuvres," AAS/AIAA Space flight Mechanics Meeting, USA, 2005, AAS-05-106.
  19. Singer, N. C., and Seering, W. P., "Preshaping Command Inputs to Reduce System Vibration," Transactions of the ASME, Vol. 112, pp.76-82.
  20. Bang, H., and Junkins, J. L., "Lyapunov Optimal Control Law for Flexible Space Structure Maneuver and Vibration Control," Journal of Astronautical Sciences, Vol. 41, pp. 91-118.
  21. Bilimoria, K. D., and Wie, B., "Time-Optimal Three-Axis Reorientation of a Rigid Spacecraft," Journal of Guidance, Control and Dynamics, Vol. 16, No. 3, 1993, pp.446-452. https://doi.org/10.2514/3.21030
  22. Sidi, M. J., Spacecraft Dynamics and Control: A Practical Engineering Approach, Cambridge University Press, USA, 2000, p.93.
  23. Markley, F. L., Reynolds, R. G., Liu, F. X., and Lebsock, K. L., "Maximum Torque and Momentum Envelopes for Reaction-Wheel Arrays," Journal of Guidance, Control and Dynamics, Vol. 33, No. 5, 2010, pp.1606-1614. https://doi.org/10.2514/1.47235
  24. Leeghim, H., Jin, J., and Mok, S.-H., "Feasible Angular Momentum of Spacecraft Installed with Control Moment Gyros," Advances in Space Research, Vol. 61, No. 1, 2018, pp.466-477. https://doi.org/10.1016/j.asr.2017.08.015
  25. Kim, J.-J., and Agrawal, B. N., "Experiments on Jerk-Limited Slew Maneuvers of a Flexible Spacecraft," AIAA Guidance, Navigation, and Control Conference and Exhibit, USA, 2006, AIAA-2006-6187.
  26. Xiao, B., Hu, Q., and Zhang, Y., "Fault-Tolerant Attitude Control for Flexible Spacecraft Without Angular Velocity Magnitude Measurement," Journal of Guidance, Control and Dynamics, Vol. 34, 2011, pp. 1556-1561. https://doi.org/10.2514/1.51148