DOI QR코드

DOI QR Code

Analysis and radiation dose assessment of 222Rn in indoor air at schools: Case study at Ulju County, Korea

  • Lee, ChoongWie (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Choi, Sungyeol (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Hee Reyoung (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • 투고 : 2017.12.26
  • 심사 : 2018.03.25
  • 발행 : 2018.06.25

초록

$^{222}Rn$ exists in nature in the form of a rare radioactive gas. In terms of environmental radiation, issues regarding $^{222}Rn$ have persisted because of its radiological hazardousness. Ulju County is one of the regions of Ulsan metropolitan city, with a population of 227,699. Ulju County has the highest density of industrial complexes in Korea. In this study, $^{222}Rn$ radioactivity concentration was measured and analyzed in 57 schools in Ulju County using 114 passive LR-115 type detectors to secure radiological safety and confirm basic information for reduction of resident exposure to $^{222}Rn$. The effective dose of $^{222}Rn$ was assessed to find the actual risk of the concentration surveyed in schools to human beings. The dose depended on four factors: subjects, $^{222}Rn$ concentration, dose coefficient, and time. The individuals subjected to dose estimation were classified into three types: students, teachers, and office workers. The subjects had different dwelling locations and times. The findings demonstrate that the radiological hazard to students and workers at schools in Ulju County owing to $^{222}Rn$ is negligible in terms of $^{222}Rn$ activity recommendation level.

키워드

참고문헌

  1. A. Gray, S. Read, P. McGale, S. Darby, Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them, BMJ 338 (2009) a3110. https://doi.org/10.1136/bmj.a3110
  2. R.E. Thompson, D.F. Nelson, J.H. Popkin, Z. Popkin, Case-control study of lung cancer risk from residential radon exposure in Worcester County, Massachusetts, Health Phys. 94 (2008) 228-241. https://doi.org/10.1097/01.HP.0000288561.53790.5f
  3. T.K. Sethi, M.N. El-Ghamry, G.H. Kloecker, Radon and lung cancer, Clin. Adv. Hematol. Oncol. 10 (2012) 157-164.
  4. M.C. Turner, D. Krewski, C.A. Pope III, Y. Chen, S.M. Gapstur, M.J. Thun, Longterm ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers, Am. J. Respir. Crit. Care Med. 184 (2011) 1374-1381. https://doi.org/10.1164/rccm.201106-1011OC
  5. D. Tchorz-Trzeciakiewicz, M. Klos, Factors affecting atmospheric radon concentration, human health, Sci. Total Environ. 584 (2017) 911-920.
  6. A. Auvinen, L. Salonen, J. Pekkanen, E. Pukkala, T. Ilus, P. Kurttio, Radon and other natural radionuclides in drinking water and risk of stomach cancer: a case-cohort study in Finland, Int. J. Canc. 114 (2005) 109-113. https://doi.org/10.1002/ijc.20680
  7. M. Kreuzer, B. Grosche, M. Schnelzer, A. Tschense, F. Dufey, L. Walsh, Radon and risk of death from cancer and cardiovascular diseases in the German uranium miners cohort study: follow-up 1946-2003, Radiat. Environ. Biophys. 49 (2010) 177-185. https://doi.org/10.1007/s00411-009-0249-5
  8. C. Sainz, L.S. Quindos, I. Fuente, J. Nicolas, L. Quindos, Analysis of the main factors affecting the evaluation of the radon dose in workplaces: the case of tourist caves, J. Hazard Mater. 145 (2007) 368-371. https://doi.org/10.1016/j.jhazmat.2006.11.033
  9. B.P. Jelle, Development of a model for radon concentration in indoor air, Sci. Total Environ. 416 (2012) 343-350. https://doi.org/10.1016/j.scitotenv.2011.11.052
  10. N. Hunter, C.R. Muirhead, J.C. Miles, J.D. Appleton, Uncertainties in radon related to house-specific factors and proximity to geological boundaries in England, Radiat. Protect. Dosim. 136 (2009) 17-22. https://doi.org/10.1093/rpd/ncp148
  11. K. Akbari, J. Mahmoudi, M. Ghanbari, Influence of indoor air conditions on radon concentration in a detached house, J. Environ. Radioact. 116 (2013) 166-173. https://doi.org/10.1016/j.jenvrad.2012.08.013
  12. M. Maduar, M. Campos, B. Mazzilli, F. Villaverde, Assessment of external gamma exposure and radon levels in a dwelling constructed with phosphogypsum plates, J. Hazard Mater. 190 (2011) 1063-1067. https://doi.org/10.1016/j.jhazmat.2011.03.019
  13. K. Yu, B. Lau, D. Nikezic, Assessment of environmental radon hazard using human respiratory tract models, J. Hazard Mater. 132 (2006) 98-110. https://doi.org/10.1016/j.jhazmat.2005.11.087
  14. F. Bochicchio, Z. Zunic, C. Carpentieri, S. Antignani, G. Venoso, V. Carelli, C. Cordedda, N. Veselinovic, T. Tollefsen, P. Bossew, Radon in indoor air of primary schools: a systematic survey to evaluate factors affecting radon concentration levels and their variability, Indoor Air 24 (2014) 315-326. https://doi.org/10.1111/ina.12073
  15. A. Clouvas, S. Xanthos, G. Takoudis, Indoor radon levels in Greek schools, J. Environ. Radioact. 102 (2011) 881-885. https://doi.org/10.1016/j.jenvrad.2011.05.001
  16. S. Rahman, J. Anwar, A. Jabbar, M. Rafique, Indoor radon survey in 120 schools situated in four districts of the Punjab Province-Pakistan, Indoor Built Environ. 19 (2) (2009) 214-220. https://doi.org/10.1177/1420326X09347132
  17. G. Kendall, T. Smith, Doses from radon and its decay products to children, J. Radiol. Prot. 25 (2005) 241. https://doi.org/10.1088/0952-4746/25/3/002
  18. ICRP, in: Protection Against radon at Home and at Work, 65, ICRP Publication, 1993.
  19. ICRP, in: 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, International Commission on Radiological Protection, 1991.
  20. W.H. Organization, WHO Handbook on Indoor Radon: a Public Health Perspective, World Health Organization, 2009.
  21. C.-K. Kim, Y.-J. Kim, H.-Y. Lee, B.-U. Chang, S. Tokonami, 220 Rn and its progeny in dwellings of Korea, Radiat. Meas. 42 (2007) 1409-1414. https://doi.org/10.1016/j.radmeas.2007.06.012
  22. C.-K. Kim, S.-C. Lee, D.-M. Lee, B.-U. Chang, B.-H. Rho, H.-D. Kang, Nationwide survey of radon levels in Korea, Health Phys. 84 (2003) 354-360. https://doi.org/10.1097/00004032-200303000-00008
  23. KINS, KINS-GR-300, in: Assessment of Radiation Risk for the Korean Population, 2005.
  24. D.-S. Kim, Y.-S. Kim, Distributions of airborne radon concentrations in Seoul metropolitan subway stations, Health Phys. 65 (1993) 12-16. https://doi.org/10.1097/00004032-199307000-00002
  25. S. Yoon, B.-U. Chang, Y. Kim, J.-I. Byun, J.-Y. Yun, Indoor radon distribution of subway stations in a Korean major city, J. Environ. Radioact. 101 (2010) 304-308. https://doi.org/10.1016/j.jenvrad.2010.01.002
  26. Jae sik Jeon, Deok chan Kim, Yeong ung Park, Ji yeong Lee, Sang su Lee, Nam jin Kim, Min yeong Kim, in: Analysis on the Distribution of High Level Radon and Reduction Strategy at Subway Platform, Korean Society for Atmospheric Environment, 2006, pp. 552-553.
  27. M.H. Song, B.-U. Chang, Y. Kim, K.-W. Cho, Radon exposure assessment for underground workers: a case of Seoul subway police officers in Korea, Radiat. Protect. Dosim. 147 (2011) 401-405. https://doi.org/10.1093/rpd/ncq461
  28. S.-B. Kwon, Y. Cho, D. Park, E.-Y. Park, Study on the indoor air quality of Seoul metropolitan subway during the rush hour, Indoor Built Environ. 17 (2008) 361-369. https://doi.org/10.1177/1420326X08094683
  29. J.-g. Lee, S.-h. Byeon, J.-h. Lee, ICCAS-SICE, 2009, in: The Effect of Platform Screen Door (PSD) for Fine Particles at Subway Train in Seoul, Korea, IEEE, 2009, pp. 1707-1710.
  30. Y.W. Park, Alpha Track Detector with Foldable Semicircle Ring, in, Google Patents, 2007.
  31. D. Nikezic, K. Yu, Optical characteristics of tracks in solid state nuclear track detectors studied with ray tracing method, Nucl. Track Detect. Des. Meth. Appl. (2009) 177-195. Chapter 5.
  32. Y.W. Park, in: Principle and Method of Measurement of Alpha Track Detector, Korea Occupational Safety and Health Administration Seminar, 2015.
  33. S. Rahman, N. Mati, B. Ghauri, Seasonal indoor radon concentration in the North West Frontier Province and federally administered tribal areasd Pakistan, Radiat. Meas. 42 (2007) 1715-1722. https://doi.org/10.1016/j.radmeas.2007.07.002
  34. T. Ramachandran, T. Muraleedharan, A. Shaikh, M.S. Ramu, Seasonal variation of indoor radon and its progeny concentration in a dwelling, Atmos. Environ. Part A Gen. Top. 24 (1990) 639-643. https://doi.org/10.1016/0960-1686(90)90019-J
  35. M. Faheem, N. Mati, Seasonal variation in indoor radon concentrations in dwellings in six districts of the Punjab province, Pakistan, J. Radiol. Prot. 27 (2007) 493. https://doi.org/10.1088/0952-4746/27/4/N01
  36. K.S. Lee, S.Y. Seo, Y.J. Kim, K.H. Choi, B.S. Son, A study on the indoor radon concentration of elementary school in Korea, Kor. Soc. Indoor Environ. 9 (2012) 127-133.
  37. ICRP, Recommendations of the International Commission on Radiological Protection, 37, Ann. ICRP, 2007.
  38. D. Annex, Sources and Effects of Ionizing Radiation, 125, Investigation of I, 1977.
  39. R. Winkler-Heil, W. Hofmann, J. Marsh, A. Birchall, Comparison of radon lung dosimetry models for the estimation of dose uncertainties, Radiat. Protect. Dosim. 127 (1-4) (2007) 27-30. https://doi.org/10.1093/rpd/ncm339
  40. J. Marsh, A. Birchall, K. Davis, Comparative dosimetry in homes and mines: estimation of K-factors, Radioact. Environ. 7 (2005) 290-298.
  41. J.W. Marsh, J.D. Harrison, D. Laurier, E. Blanchardon, F. Paquet, M. Tirmarche, Dose conversion factors for radon: recent developments, Health Phys. 99 (2010) 511-516. https://doi.org/10.1097/HP.0b013e3181d6bc19
  42. A. Birchall, A. James, Uncertainty analysis of the effective dose per unit exposure from radon progeny and implications for ICRP risk-weighting factors, Radiat. Protect. Dosim. 53 (1994) 133-140. https://doi.org/10.1093/rpd/53.1-4.133
  43. J. Porstendorfer, Physical parameters and dose factors of the radon and thoron decay products, Radiat. Protect. Dosim. 94 (2001) 365-373. https://doi.org/10.1093/oxfordjournals.rpd.a006512
  44. ICRP, ICRP Main Commission Meeting, April 13-17, in, Sydney. Australia.
  45. ICRP, The 2007 Recommendations of the International Commission on Radiological Protection, 37, ICRP Publication, 2007, pp. 2-4, 103, Ann. ICRP.
  46. ICRP, Lung Cancer Risk from Radon and Progeny and Statement on Radon, 40, ICRP Publication, 2010, 115, Ann. ICRP.
  47. H. Hotzl, R. Winkler, Long-term variation of outdoor radon equilibrium equivalent concentration, Radiat. Environ. Biophys. 33 (1994) 381-392. https://doi.org/10.1007/BF01210459
  48. A. Cavallo, The radon equilibrium factor and comparative dosimetry in homes and mines, Radiat. Protect. Dosim. 92 (2000) 295-298. https://doi.org/10.1093/oxfordjournals.rpd.a033295
  49. S. Singh, R. Malhotra, J. Kumar, L. Singh, Indoor radon measurements in dwellings of Kulu area, Himachal Pradesh, using solid state nuclear track detectors, Radiat. Meas. 34 (2001) 505-508. https://doi.org/10.1016/S1350-4487(01)00216-5
  50. Y. Kim, B.-U. Chang, H.-M. Park, C.-K. Kim, S. Tokonami, National radon survey in Korea, Radiat. Protect. Dosim. 146 (2011) 6-10. https://doi.org/10.1093/rpd/ncr094
  51. J. Marsh, A. Birchall, Sensitivity analysis of the weighted equivalent lung dose per unit exposure from radon progeny, Radiat. Protect. Dosim. 87 (2000) 167-178. https://doi.org/10.1093/oxfordjournals.rpd.a032993
  52. R.C. Valle, S. Normandeau, G.R. Gonzalez, Education at a Glance Interim Report: Update of Employment and Educational Attainment Indicators, Organisation for Economic Co-operation and Development (OECD), 2015.
  53. J. Vaupotic, N. Smrekar, Z.S. Zunic, Comparison of radon doses based on different radon monitoring approaches, J. Environ. Radioact. 169 (2017) 19-26.
  54. P. Kolarz, D. Filipovic, B. Marinkovic, Daily variations of indoor air-ion and radon concentrations, Appl. Radiat. Isot. 67 (2009) 2062-2067. https://doi.org/10.1016/j.apradiso.2009.07.023
  55. C. Man, H. Yeung, Modeling and measuring the indoor radon concentrations in high-rise buildings in Hong Kong, Appl. Radiat. Isot. 50 (1999) 1131-1135. https://doi.org/10.1016/S0969-8043(98)00128-6
  56. H. Al-Khateeb, A. Al-Qudah, F. Alzoubi, M. Alqadi, K. Aljarrah, Radon concentration and radon effective dose rate in dwellings of some villages in the district of Ajloun, Jordan, Appl. Radiat. Isot. 70 (2012) 1579-1582. https://doi.org/10.1016/j.apradiso.2012.04.009

피인용 문헌

  1. Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia vol.51, pp.1, 2019, https://doi.org/10.1016/j.net.2018.09.017
  2. Weather-dependent modelling of the indoor radon concentration in two dwellings using CONTAM vol.28, pp.10, 2018, https://doi.org/10.1177/1420326x19841119