DOI QR코드

DOI QR Code

사람 걸음 탐지 및 배경잡음 분류 처리를 위한 도플러 레이다용 딥뉴럴네트워크

Human Walking Detection and Background Noise Classification by Deep Neural Networks for Doppler Radars

  • 권지훈 (한화시스템 레이다연구소) ;
  • 하성재 (한국폴리텍대학 정보통신시스템) ;
  • 곽노준 (서울대학교 융합과학기술대학원)
  • Kwon, Jihoon (Radar R&D Center, Hanwha Systems) ;
  • Ha, Seoung-Jae (Department of Information and Communication Systems, Korea Polytechnics) ;
  • Kwak, Nojun (Graduate School of Convergence Science and Technology, Seoul National University)
  • 투고 : 2018.04.11
  • 심사 : 2018.07.07
  • 발행 : 2018.07.31

초록

본 논문은 딥뉴럴네트워크(deep neural network: DNN)를 이용해 사람 걸음 및 배경잡음원에 의해 발생한 마이크로 도플러 신호를 탐지 및 분류 처리하는 연구를 제안한다. 기존 분류처리 연구는 경험 및 통계적인 방법을 통해 분류기 성능에 직접적으로 영향을 미치는 의미있는 특징을 추출하기 위한 복잡한 과정을 포함한다. 그러나 딥뉴럴네트워크는 다수의 레이어 층을 단계적으로 통과하는 과정을 통해 점진적으로 특징을 재구성 및 생성하므로, 별도의 특징 추출과정을 생략할 수 있으며, 자연스럽게 네트워크상에서 특징을 생성할 수 있는 이점이 있다. 따라서 본 논문에서는 마이크로 도플러 신호 인식을 위한 딥뉴럴네트워크 효과성 입증을 위해, 이진분류기와 다층클래스 분류기를 다층퍼셉트론과 딥뉴럴네트워크를 통해 설계하고 비교분석한다. 실험 결과, 다층퍼셉트론은 이진분류기의 경우 테스트세트에 대한 분류 정확도가 90.3 %로 측정되었고, 다층클래스 분류기의 경우 테스트세트에 대한 분류정확도가 86.1 %로 측정되었다. 딥뉴럴네트워크는 이진분류기의 경우 테스트세트에 대한 분류 정확도가 97.3 %로 측정되었고, 다층클래스 분류기의 경우 테스트세트에 대한 분류정확도가 96.1 %로 측정되었다.

The effectiveness of deep neural networks (DNNs) for detection and classification of micro-Doppler signals generated by human walking and background noise sources is investigated. Previous research included a complex process for extracting meaningful features that directly affect classifier performance, and this feature extraction is based on experiences and statistical analysis. However, because a DNN gradually reconstructs and generates features through a process of passing layers in a network, the preprocess for feature extraction is not required. Therefore, binary classifiers and multiclass classifiers were designed and analyzed in which multilayer perceptrons (MLPs) and DNNs were applied, and the effectiveness of DNNs for recognizing micro-Doppler signals was demonstrated. Experimental results showed that, in the case of MLPs, the classification accuracies of the binary classifier and the multiclass classifier were 90.3% and 86.1%, respectively, for the test dataset. In the case of DNNs, the classification accuracies of the binary classifier and the multiclass classifier were 97.3% and 96.1%, respectively, for the test dataset.

키워드

참고문헌

  1. R. C. Browning, E. A., Baker, J. A. Herron, and R. Kram, "Effects of obesity and sex on the energetic cost and preferred speed of walking," Journal of Applied Physiology, vol. 100, no. 2, pp. 390-398, 2006. https://doi.org/10.1152/japplphysiol.00767.2005
  2. Y. Kim, S. Ha, and J. Kwon, "Human detection using Doppler radar based on physical characteristics of targets," IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 289-293, Feb. 2015. https://doi.org/10.1109/LGRS.2014.2336231
  3. Y. Kim, H. Ling, "Human activity classification based on micro-Doppler signatures using an artificial neural network," in 2008 IEEE Antennas and Propagation Society International Symposium, 2008.
  4. P. Van Dorp, F. C. A. Groen, "Feature-based human motion parameter estimation with radar," IET Radar, Sonar & Navigation, vol. 2 no. 2, pp. 135-145, 2008. https://doi.org/10.1049/iet-rsn:20070086
  5. J. Kwon, N. Kwak, "Human detection by neural networks using a low-cost short-range Doppler radar sensor," in 2017 IEEE Radar Conference, Seattle, WA, May 2017, pp. 755-760.
  6. Y. Kim, T. Moon, "Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks," IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 1, pp. 8-12, Jan. 2016. https://doi.org/10.1109/LGRS.2015.2491329
  7. J. Li, S. L. Phung, F. H. C. Tivive, and A. Bouzerdoum, "Automatic classification of human motions using Doppler radar," in the 2012 International Joint Conference on Neural Networks, 2012.
  8. P. Van Dorp, F. C. A. Groen, "Feature-based human motion parameter estimation with radar," IET Radar, Sonar and Navigation, vol. 2, no. 2, pp. 135-145, 2008. https://doi.org/10.1049/iet-rsn:20070086
  9. V. C. Chen, "Doppler signatures of radar backscattering from objects with micro-motions," IET Signal Processing, vol. 2, no. 3 pp. 291-300, 2008. https://doi.org/10.1049/iet-spr:20070137
  10. T. Thayaparan, S. Abrol, E. Riseborough, L. J. Stankovic, D. Lamothe, and G. Duff, "Analysis of radar micro-Doppler signatures from experimental helicopter and human data," IET Radar, Sonar & Navigation, vol. 1, no. 4, pp. 289-299, 2007. https://doi.org/10.1049/iet-rsn:20060103
  11. J. Ding, B. Chen, H. Liu, and M. Huang, "Convolutional neural network with data augmentation for SAR target recognition," IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 3, pp. 364-368, 2016. https://doi.org/10.1109/LGRS.2015.2513754
  12. H. Sak, A. Senior, and F. Beaufays, "Long short-term memory recurrent neural network architectures for large scale acoustic modeling," in Fifteenth Annual Conference of the International Speech Communication Association, 2014.
  13. Y. Gal, Z. Ghahramani, "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning," in International Conference on Machine Learning, 2016, pp. 1050-1059.