DOI QR코드

DOI QR Code

Assessment of CMIP5 GCMs for future extreme drought analysis

미래 극한 가뭄 전망을 위한 CMIP5 GCMs 평가

  • Hong, Hyun-Pyo (Department of Civil Engineering, Joongbu University) ;
  • Park, Seo-Yeon (Department of Civil Engineering, Joongbu University) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Lee, Joo-Heon (Department of Civil Engineering, Joongbu University)
  • 홍현표 (중부대학교 공과대학 토목공학과) ;
  • 박서연 (중부대학교 공과대학 토목공학과) ;
  • 김태웅 (한양대학교 공과대학 건설환경공학과) ;
  • 이주헌 (중부대학교 공과대학 토목공학과)
  • Received : 2018.01.30
  • Accepted : 2018.04.09
  • Published : 2018.07.31

Abstract

In this study, CMIP5 GCMs rainfall data (2011~2099) based on RCP scenarios were used to analyze the extreme drought evaluation for the future period. For prospective drought assessment, historical observations were used based on the Automated Surface Observing System (ASOS) data (1976~2010) of the Korea Meteorological Administration. Through the analysis of various indicators, such as average annual rainfall, rainy days, drought spell, and average drought severity was carried out for the drought evaluation of the five major river basins (Han river, Nakdong river, Geum river, Sumjin river, and Youngsan river) over the Korean peninsula. The GCMs that predicted the most severe future droughts are CMCC-CMS, IPSL-CM5A-LR and IPSL-CM5A-MR. Moderate future droughts were predicted from HadGEM2-CC, CMCC-CM and HadGEM2-ES. GCMs with relatively weak future drought forecasts were selected as CESM1-CAM5, MIROC-ESM-CHEM and CanESM2. The results of this study might be used as a fundamental data to choose a reasonable climate change scenario in future extreme drought evaluation.

본 연구에서는 미래 기간의 극한 가뭄을 분석하기 위하여 RCP 시나리오 기반의 CMIP5 GCMs 강우자료(2011~2099)를 활용하였으며, 과거 관측치의 경우 기상청 ASOS자료(1976~2005)를 이용하여, 미래 가뭄 평가를 하였다. 한반도 5대강(한강, 낙동강, 금강, 섬진강, 영산강)을 대상으로 연평균 강우량, 무강우일수, Drought Spell, Average Severity를 비교 분석한 결과, 가장 심한 수준의 미래 가뭄을 전망하는 GCM은 CMCC-CMS, IPSL-CM5A-LR, IPSL-CM5A-MR로 나타났으며, 보통 수준의 미래 가뭄을 전망하는 GCM은 HadGEM2-CC, CMCC-CM, HadGEM2-ES, 상대적으로 미래의 가뭄을 약하게 전망하는 GCM은 CESM1-CAM5, MIROC-ESM-CHEM, CanESM2로 선정되었다. 극한 가뭄을 전망하는 모델로는 CMCC-CMS, 가장 약한 가뭄을 전망하는 모델은 CanESM2를 선정하여 한반도에 적용한 결과 CMCC-CMS는 과거 대비 가뭄의 심도 및 빈도가 증가하는 것을 확인할 수 있었으며, CanESM2는 과거 대비 심도는 증가하였지만 발생빈도는 적어지는 것을 확인할 수 있었다. 본 연구 결과는 미래 극한 가뭄 평가에 있어서 합리적인 기후변화 시나리오를 선정하는 기초 자료로 활용될 것으로 판단된다.

Keywords

References

  1. Chung, S. O. (2012). "Projection of paddy rice consumptive use in the major plains of the Korean peninsula under the RCP scenarios." Journal of the Korean Society of Agricultural Engineer, Vol. 54, No. 5, pp. 35-41. https://doi.org/10.5389/KSAE.2012.54.5.035
  2. Dubrovsky, M., Hayes, M., Duce, P., Trnka, M., Svoboda, M., and Zara, P. (2014). "Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region." Regional Environmental Change, Vol. 14, No. 5, pp. 1907-1919. https://doi.org/10.1007/s10113-013-0562-z
  3. Eum, H. I., and Cannon, A. J. (2017). "Intercomparison of projected changes in climate extremes for South Korea: application of trend preserving statistical downscaling methods to the CMIP5 ensemble." International Journal of Climatology, Vol. 37, pp. 3381-3397. https://doi.org/10.1002/joc.4924
  4. Kim, C. J., Park, M. J., and Lee, J. H. (2014). "Analysis of climate change impacts on the spatial and frequency patterns of drought using a potential drought hazard mapping approach, International Journal of Climatology, Vol. 34, pp. 61-80. https://doi.org/10.1002/joc.3666
  5. Lee, J. H., Cho, K. J., Kim, C. J., and Park, M. J. (2012). "Analysis on the spatio-temporal distribution of drought using potential drought hazard map." Journal of the Korea Water Resources Association, Vol. 45, No. 10, pp.983-995. https://doi.org/10.3741/JKWRA.2012.45.10.983
  6. Lee, J. H., and Kim, C. J. (2013). "A multimodel assessment of the climate change effect on the drought severity-duration-frequency relationship." Hydrological Processes, Vol. 27, No. 19, pp. 2800-2813. https://doi.org/10.1002/hyp.9390
  7. Lee, J. H., Kwon, H. H., Jang, H. W., and Kim, T. W. (2016). "Future changes in drought characteristics under extreme climate change over South Korea." Advances in Meteorology, Vol. 2016, Article ID 9164265, 19 pages.
  8. McKee, T. B., Doesken, N. J., and Kleist, J. (1995). "Drought monitoring with multiple time scales." Proceedings 9th Conference on Applied Climatology, 15-20 January 1995, Dallas, TX, American Meteorological Society, pp. 233-236.
  9. McMahon, T. A., Peel, M. C., and Karoly, D. J. (2015). "Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation." Hydrology and Earth System Sciences, Vol. 19, No. 1, pp. 361-377. https://doi.org/10.5194/hess-19-361-2015
  10. Park, K. W., Kim, J. T., and Lee, J. N. (2006). "Evaluation of the drought indicator for regional drought assessment." Proceedings Korea Water Resources Association Annual Conference 2006, pp. 214-220.
  11. Park, B. S., Lee, J. H., Kim, C. J., and Jang, H. W. (2013). "Projection of future drought of Korea based on probabilistic approach using multi-model and multi climate change scenarios." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1871-1885. https://doi.org/10.12652/Ksce.2013.33.5.1871
  12. Park, J. Y., Jung, H., Jang, C. H., and Kim, S. J. (2014). "Assessing climate change impact on hydrological components of Yongdam dam watershed using RCP emission scenarios and SWAT model." Journal of the Korean Society of Agricultural Engineers, Vol. 56, No. 3, pp. 19-29. https://doi.org/10.5389/KSAE.2014.56.3.019
  13. Rhee, J., and Cho, J. (2016). "Future changes in drought characteristics: regional analysis for South Korea under CMIP5 projections." Journal of Hydrometeorology, Vol. 17, No. 1, pp. 437-451. https://doi.org/10.1175/JHM-D-15-0027.1
  14. Shin, Y. H., and Jung, H. C. (2015). "Assessing uncertainty in future climate change in Northeast Asia using multiple CMIP5 GCMs with four RCP scenarios." Journal of Environmental Impact Assessment, Vol. 24, No. 3, pp. 205-216. https://doi.org/10.14249/eia.2015.24.3.205
  15. Van Pelt, S. C., and Swart, R. J. (2011). "Climate change risk management in transnational river basins: the Rhine." Water Resources Management, Vol. 25, No. 14, p. 3837. https://doi.org/10.1007/s11269-011-9891-1
  16. Wilhite, D. A., Sivakumar, M. V., and Pulwarty, R. (2014). "Managing drought risk in a changing climate: The role of national drought policy." Weather and Climate Extremes, Vol. 3, pp. 4-13. https://doi.org/10.1016/j.wace.2014.01.002
  17. Wojcik, R. (2015). "Reliability of CMIP5 GCM simulations in reproducing atmospheric circulation over Europe and the North Atlantic: a statistical downscaling perspective." International Journal of Climatology, Vol. 35, No. 5, pp. 714-732. https://doi.org/10.1002/joc.4015
  18. Yoo, S. H., Kim, T., Lee, S. H., and Choi, J. Y. (2015). "Trend analysis of projected climate data based on CMIP5 GCMs for climate change impact assessment on agricultural water resources." Journal of The Korean Society of Agricultural Engineers, Vol. 57, No. 5, pp. 69-80. https://doi.org/10.5389/KSAE.2015.57.5.069