DOI QR코드

DOI QR Code

Effect of Silica and Iron on the Fouling Tendency of Reverse Osmosis Membrane for Treating Wastewater from an Integrated Iron and Steel Mill

역삼투막을 이용한 제철폐수 처리 시 실리카 및 철 이온이 막 폐색에 미치는 영향

  • Received : 2018.05.21
  • Accepted : 2018.06.21
  • Published : 2018.08.01

Abstract

An integrated iron and steel mill uses a large amount of water and produces wastewater which contains various contaminants such as iron, manganese, etc. Especially, in some regions of Southeast Asia, the concentration of silica in iron and steel mill wastewater is higher than in other countries. Silica is known to be one of the main causes for fouling in the membrane processes for water reuse. In cases of high concentrations of silica in iron and steel mill wastewater, the ferrous silicate tends to be formed. This could lead to higher fouling tendency depositing on the membrane surface. Therefore we conducted a pilot test to investigate the effect of silica and iron on the fouling tendency of reverse osmosis (RO) membrane for treating two types of wastewater from an integrated iron and steel mill. In this case of treated wastewater from iron and steel mill, RO pilot plant was operated with the fluxes 15.9LMH and 18.8LMH for 112 days to investigate the fouling characteristics. The results found that the fluctuation of flux was much wider than the average flux and the minimum permeability was low at 78%. In the case of treated runoff from an integrated iron and steel mill, the average concentration of iron was lower than in wastewater. RO pilot test was conducted with the flux 18.8LMH for 46 days. The results found that runoff had a lower fouling tendency and pre-treatment using microfiltration (MF) could minimize the fouling problem of RO.

제철공정에서 물 사용량은 조강 생산량 당 $4.2m^3$/톤으로 많으며 폐수의 성상에 있어서 철, 망간 등 물질을 포함하고 있다. 특히 동남아시아의 일부지역은 다른 지역에 비해 실리카의 농도가 높다. 실리카는 물 재이용을 위한 막 처리과정에서 막 폐색의 주된 요인으로 작용하기 때문에 물 재이용에 있어 제한요소이다. 실리카 농도가 높은 제철폐수의 경우 철 이온과 실리카에 의한 규산제일철 형성에 의한 막 폐색 발생우려가 높다. 본 연구는 두 가지 경우에 대하여 파일럿 테스트를 실시하였다. 제철폐수 처리수의 경우 RO 파일럿 테스트는 플럭스 15.9LMH 및 18.8LMH로 112일 동안 수행하였다. 실험결과 플럭스의 변동 및 차압(TMP, trans membrane pressure)이 크게 나타났으며, 최소 투과율은 78%로 낮아 막 폐색 가능을 확인할 수 있었다. 오탁수 처리수를 이용한 RO 파일럿 테스트는 플럭스 18.8LMH로 46일 동안 수행하였으며, 철 이온 농도는 0.11mg/l으로 폐수 처리수보다 낮았다. 실험결과 철 이온 등의 농도가 낮은 오탁수 처리수는 플럭스 및 TMP의 변동이 작아 RO 막 폐색현상이 폐수 처리수보다 저감됨을 알 수 있었다. 유입수 조건이 실리카, 철 및 망간 농도가 높은 경우 MF 전처리를 통해 RO 막 폐색현상을 저감시킬 수 있었다.

Keywords

References

  1. American Public Health Association (2012). Standard Methods for the Examination of Water and Wastewater, 22nd Edition, pp. 1-1496.
  2. Chan, S. H., Chen, Z. J. and He, P. (1995). "Effect of ferric chloride on silica fouling." Journal of Heat Transfer, Vol. 117, pp. 323-328. https://doi.org/10.1115/1.2822524
  3. Choi, J. H., Yoo, C. S., Lee, J. W., Sim, J. H., Lee, S. H. and Kim, Y. O. (2014). "Scale reduction evaluation of RO system for steel wastewater reuse by chemical pretreatment." Journal of the Korean Society of Civil Engineers (in Korean), pp. 401-402.
  4. Choi, S. K. (2013). "Pre-treatment and concentrate treatment of reverse osmosis process for recycling of wastewater from ion and steel making process." Proceedings of the 2013 Conference Korean Society of Water and Wastewater. Korean Society on Water Environment, F-E19 (in Korean), pp. 111-112.
  5. Iler, R. K. (1979). The Chemistry of Silica : Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, pp. 1-896.
  6. Julia, N. H., Steve, T. and Ames, I. (2016). Direct Membrane Treatment of Anaerobic High Iron and Manganese Groundwaters, Harn R/O Systems, Inc., Venice, pp. 1-25.
  7. Kimura, K., Okazaki, S., Ohashi, T. and Watanabe, Y. (2016). "Importance of the co-presence of silica and organic matter in membrane fouling for RO filtering MBR effluent." Journal of Membrane Science, Vol. 501, pp. 60-67. https://doi.org/10.1016/j.memsci.2015.12.016
  8. Koo, T., Lee, Y. J. and Sheikholeslami, R. (2001). "Silica fouling and cleaning of reverse osmosis membranes." Desalination, Vol. 139, Issues 1-3, pp. 43-56. https://doi.org/10.1016/S0011-9164(01)00293-4
  9. Pham, A. L., Sedlak, D. L. and Doyle, F. M. (2012). "Dissolution of mesoporous silica supports in aqueous solution: Implications for mesoporous silica-based water treatment process." Applied Catalysis B : Environmental 126, pp. 258-264. https://doi.org/10.1016/j.apcatb.2012.07.018
  10. Roque, H. (1996). Chemical Water Treatment: Principles and Practice, VHC Publishers, Inc., New York.
  11. Safarik, J. and Phipps, D. W. (2017). "RO membrane surface factors influencing specific flux." 2017 AMTA/AWWA Membrane Technology Conference and Exposition(MTC17), Long Beach, California, pp. 1-12.
  12. Sahachaiyunta, P., Koo, T. and Sheikholeslami, R. (2002). "Effect of several inorganic species on silica fouling in RO membranes." Desalination, Vol. 144, Issues 1-3, pp. 373-378. https://doi.org/10.1016/S0011-9164(02)00346-6
  13. Sheikholeslami, R., Al-Mutaz, I. S., Koo, T. and Young, A. (2001). "Pretreatment and the effect of cations and anions on prevention of silica fouling." Desalination, Vol. 139, Issues 1-3, pp. 83-95. https://doi.org/10.1016/S0011-9164(01)00297-1
  14. DOW Chemical Company, The DOW Water & Process Solution: FilmtecTM Reverse Osmosis Membranes, Techmical Manual No. 609-00071-1009, pp. 45-48, pp. 63-64.
  15. Weres, O., Yee, A. and Taso, L. (1981). "Kinetics of silica polymerization." Journal of Colloid and Interface Science, pp. 379-402.
  16. Wong, J. M., Brown and Caldwell (2014). "From industrial wastewater to ultrapure water using membrane technologies." 2014 Membrane Technology Conference & Exposition, AWWA/AMTA Membrane Technology Conference, pp. 1-10.