과제정보
연구 과제 주관 기관 : Jeju National University
참고문헌
- J. A. Alvarez Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 2, 179-194. https://doi.org/10.1007/BF00130919
- M. J. Jung and S. D. Jung, Riemannian foliations admitting transversal conformal fields, Geom. Dedicata 133 (2008), 155-168. https://doi.org/10.1007/s10711-008-9240-6
- S. D. Jung, Riemannian foliations admitting transversal conformal fields II, Geom. Dedicata 175 (2015), 257-266. https://doi.org/10.1007/s10711-014-0039-3
- S. D. Jung, K. R. Lee, and K. Richardson, Generalized Obata theorem and its applications on foliations, J. Math. Anal. Appl. 376 (2011), no. 1, 129-135. https://doi.org/10.1016/j.jmaa.2010.10.022
- F. W. Kamber and P. Tondeur, Harmonic foliations, in Harmonic maps (New Orleans, La., 1980), 87-121, Lecture Notes in Math., 949, Springer, Berlin, 1982.
- F. W. Kamber and P. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. (2) 34 (1982), no. 4, 525-538. https://doi.org/10.2748/tmj/1178229154
- F. W. Kamber and P. Tondeur, de Rham-Hodge theory for Riemannian foliations, Math. Ann. 277 (1987), no. 3, 415-431. https://doi.org/10.1007/BF01458323
- J. Lee and K. Richardson, Lichnerowicz and Obata theorems for foliations, Pacific J. Math. 206 (2002), no. 2, 339-357. https://doi.org/10.2140/pjm.2002.206.339
- H. K. Pak and J. H. Park, A note on generalized Lichnerowicz-Obata theorems for Riemannian foliations, Bull. Korean Math. Soc. 48 (2011), no. 4, 769-777. https://doi.org/10.4134/BKMS.2011.48.4.769
- J. S. Pak and S. Yorozu, Transverse fields on foliated Riemannian manifolds, J. Korean Math. Soc. 25 (1988), no. 1, 83-92.
- J. S. Pak and S. Yorozu, Transversal conformal fields of foliations, Nihonkai Math. J. 4 (1993), no. 1, 73-85.
- P. Tondeur, Geometry of Foliations, Monographs in Mathematics, 90, Birkhauser Verlag, Basel, 1997.
- P. Tondeur and G. TTTth, On transversal infinitesimal automorphisms for harmonic foliations, Geom. Dedicata 24 (1987), no. 2, 229-236. https://doi.org/10.1007/BF00150938
- K. Yano, Concircular geometry. I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200. https://doi.org/10.3792/pia/1195579139
- K. Yano, On Riemannian manifolds with constant scalar curvature admitting a conformal transformal transformations group, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 472-476. https://doi.org/10.1073/pnas.55.3.472
- K. Yano, Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, 1970.
- S. Yorozu and T. Tanemura, Green's theorem on a foliated Riemannian manifold and its applications, Acta Math. Hungar. 56 (1990), no. 3-4, 239-245. https://doi.org/10.1007/BF01903838