DOI QR코드

DOI QR Code

ON A CLASS OF CONSTACYCLIC CODES OF LENGTH 2ps OVER $\frac{\mathbb{F}_{p^m}[u]}{{\langle}u^a{\rangle}}$

  • Dinh, Hai Q. (Division of Computational Mathematics and Engineering Institute for Computational Science Ton Duc Thang University) ;
  • Nguyen, Bac Trong (Department of Basic Sciences University of Economics and Business Administration Thai Nguyen University) ;
  • Sriboonchitta, Songsak (Faculty of Economics Chiang Mai University)
  • Received : 2017.07.28
  • Accepted : 2017.12.29
  • Published : 2018.07.31

Abstract

The aim of this paper is to study the class of ${\Lambda}$-constacyclic codes of length $2p^s$ over the finite commutative chain ring ${\mathcal{R}}_a=\frac{{\mathbb{F}_{p^m}}[u]}{{\langle}u^a{\rangle}}={\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}+{\cdots}+u^{a-1}{\mathbb{F}}_{p^m}$, for all units ${\Lambda}$ of ${\mathcal{R}}_a$ that have the form ${\Lambda}={\Lambda}_0+u{\Lambda}_1+{\cdots}+u^{a-1}{\Lambda}_{a-1}$, where ${\Lambda}_0,{\Lambda}_1,{\cdots},{\Lambda}_{a-1}{\in}{\mathbb{F}}_{p^m}$, ${\Lambda}_0{\neq}0$, ${\Lambda}_1{\neq}0$. The algebraic structure of all ${\Lambda}$-constacyclic codes of length $2p^s$ over ${\mathcal{R}}_a$ and their duals are established. As an application, this structure is used to determine the Rosenbloom-Tsfasman (RT) distance and weight distributions of all such codes. Among such constacyclic codes, the unique MDS code with respect to the RT distance is obtained.

Keywords

References

  1. M. C. V. Amarra and F. R. Nemenzo, On (1 − u)-cyclic codes over $\mathbb{F}_{p^{\kappa}} + u\mathbb{F}_{p^{\kappa}}$, Appl. Math. Lett. 21 (2008), no. 11, 1129-1133. https://doi.org/10.1016/j.aml.2007.07.035
  2. E. Berlekamp, Negacyclic codes for the Lee metric, in Combinatorial Mathematics and its Applications (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), 298-316, Univ. North Carolina Press, Chapel Hill, NC, 1968.
  3. E. Berlekamp, Algebraic Coding Theory, revised edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
  4. S. D. Berman, Semisimple cyclic and Abelian codes. II, Cybernetics 3 (1967), no. 3, 17-23 (1970). https://doi.org/10.1007/BF01119999
  5. A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $F_2 + uF_2$, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1250-1255. https://doi.org/10.1109/18.761278
  6. A. R. Calderbank, A. R. Hammons, P. V. Kumar, N. J. A. Sloane, and P. Sole, A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 218-222. https://doi.org/10.1090/S0273-0979-1993-00426-9
  7. G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seemann, On repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), no. 2, 337-342. https://doi.org/10.1109/18.75249
  8. B. Chen, H. Q. Dinh, H. Liu, and L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Finite Fields & Appl. 36 (2016), 108-130.
  9. B. Chen, L. Lin, and H. Liu, Matrix product codes with Rosenbloom-Tsfasman metric, Acta Math. Sci. Ser. B Engl. Ed. 33 (2013), no. 3, 687-700.
  10. H. Q. Dinh, Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb{F}_2 + u\mathbb{F}_2$, IEEE Trans. Inform. Theory 55 (2009), no. 4, 1730-1740. https://doi.org/10.1109/TIT.2009.2013015
  11. H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, J. Algebra 324 (2010), no. 5, 940-950. https://doi.org/10.1016/j.jalgebra.2010.05.027
  12. H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields & Appl. 18 (2012), 133-143. https://doi.org/10.1016/j.ffa.2011.07.003
  13. H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discrete Math. 313 (2013), no. 9, 983-991. https://doi.org/10.1016/j.disc.2013.01.024
  14. H. Q. Dinh, Repeated-root cyclic and negacyclic codes of length $6p^s$, in Ring theory and its applications, 69-87, Contemp. Math., 609, Amer. Math. Soc., Providence, RI, 2014.
  15. H. Q. Dinh, S. Dhompongsa, and S. Sriboonchitta, Repeated-root constacyclic codes of prime power length over $\frac{\mathbb{F}_{p^m}[u]}{}$ and their duals, Discrete Math. 339 (2016), no. 6, 1706-1715. https://doi.org/10.1016/j.disc.2016.01.020
  16. H. Q. Dinh and S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728-1744. https://doi.org/10.1109/TIT.2004.831789
  17. H. Q. Dinh, L. Wang, and S. Zhu, Negacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Finite Fields & Appl., 31 (2015), 178-201. https://doi.org/10.1016/j.ffa.2014.09.003
  18. S. Dougherty, P. Gaborit, M. Harada, and P. Sole, Type II codes over $F_2 + uF_2$, IEEE Trans. Inform. Theory 45 (1999), no. 1, 32-45. https://doi.org/10.1109/18.746770
  19. S. T. Dougherty and M. M. Skriganov, MacWilliams duality and the RosenbloomTsfasman metric, Mosc. Math. J. 2 (2002), no. 1, 81-97, 199.
  20. G. Falkner, B. Kowol, W. Heise, and E. Zehendner, On the existence of cyclic optimal codes, Atti Sem. Mat. Fis. Univ. Modena 28 (1979), no. 2, 326-341 (1980).
  21. A. R. Hammons, P.V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The $Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319. https://doi.org/10.1109/18.312154
  22. W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
  23. K. Lee, The automorphism group of a linear space with the Rosenbloom-Tsfasman metric, European J. Combin. 24 (2003), no. 6, 607-612. https://doi.org/10.1016/S0195-6698(03)00077-5
  24. S. Ling and P. Sole, Duadic codes over $F_2 + uF_2$, Appl. Algebra Engrg. Comm. Comput. 12 (2001), no. 5, 365-379. https://doi.org/10.1007/s002000100079
  25. J. L. Massey, D. J. Costello, and J. Justesen, Polynomial weights and code constructions, IEEE Trans. Information Theory IT-19 (1973), 101-110.
  26. A. A. Nechaev, Kerdock code in a cyclic form, Discrete Math. Appl. 1 (1991), no. 4, 365-384; translated from Diskret. Mat. 1 (1989), no. 4, 123-139.
  27. G. Norton and A. Salagean-Mandache, On the structure of linear and cyclic codes over a finite chain ring, Appl. Algebra Engrg. Comm. Comput. 10 (2000), no. 6, 489-506. https://doi.org/10.1007/PL00012382
  28. V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998.
  29. E. Prange, Cyclic Error-Correcting Codes in Two Symbols, (September 1957), TN-57-103.
  30. E. Prange, Some cyclic error-correcting codes with simple decoding algorithms, (April 1958), TN-58-156.
  31. E. Prange, The use of coset equivalence in the analysis and decoding of group codes, (1959), TN-59-164.
  32. E. Prange, An algorithm for factoring $x^n$−1 over a finite field, (October 1959), TN-59-175.
  33. M. Y. Rosenbloom and M. A. Tsfasman, Codes for the m-metric, Problems Inf. Trans. 33 (1997), 45-52.
  34. R. M. Roth and G. Seroussi, On cyclic MDS codes of length q over GF(q), IEEE Trans. Inform. Theory 32 (1986), no. 2, 284-285. https://doi.org/10.1109/TIT.1986.1057151
  35. M. M. Skriganov, On linear codes with large weights simultaneously for the RosenbloomTsfasman and Hamming metrics, J. Complexity 23 (2007), no. 4-6, 926-936. https://doi.org/10.1016/j.jco.2007.02.004
  36. R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring GR($p^2$, m), Discrete Appl. Math. 157 (2009), no. 13, 2892-2903. https://doi.org/10.1016/j.dam.2009.03.001
  37. P. Udaya and A. Bonnecaze, Decoding of cyclic codes over $F_2 + uF_2$, IEEE Trans. Inform. Theory 45 (1999), no. 6, 2148-2157. https://doi.org/10.1109/18.782165
  38. J. H. van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), no. 2, 343-345. https://doi.org/10.1109/18.75250