References
-
M. C. V. Amarra and F. R. Nemenzo, On (1 − u)-cyclic codes over
$\mathbb{F}_{p^{\kappa}} + u\mathbb{F}_{p^{\kappa}}$ , Appl. Math. Lett. 21 (2008), no. 11, 1129-1133. https://doi.org/10.1016/j.aml.2007.07.035 - E. Berlekamp, Negacyclic codes for the Lee metric, in Combinatorial Mathematics and its Applications (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), 298-316, Univ. North Carolina Press, Chapel Hill, NC, 1968.
- E. Berlekamp, Algebraic Coding Theory, revised edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
- S. D. Berman, Semisimple cyclic and Abelian codes. II, Cybernetics 3 (1967), no. 3, 17-23 (1970). https://doi.org/10.1007/BF01119999
-
A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over
$F_2 + uF_2$ , IEEE Trans. Inform. Theory 45 (1999), no. 4, 1250-1255. https://doi.org/10.1109/18.761278 - A. R. Calderbank, A. R. Hammons, P. V. Kumar, N. J. A. Sloane, and P. Sole, A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 218-222. https://doi.org/10.1090/S0273-0979-1993-00426-9
- G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seemann, On repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), no. 2, 337-342. https://doi.org/10.1109/18.75249
-
B. Chen, H. Q. Dinh, H. Liu, and L. Wang, Constacyclic codes of length
$2p^s$ over$\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$ , Finite Fields & Appl. 36 (2016), 108-130. - B. Chen, L. Lin, and H. Liu, Matrix product codes with Rosenbloom-Tsfasman metric, Acta Math. Sci. Ser. B Engl. Ed. 33 (2013), no. 3, 687-700.
-
H. Q. Dinh, Constacyclic codes of length
$2^s$ over Galois extension rings of$\mathbb{F}_2 + u\mathbb{F}_2$ , IEEE Trans. Inform. Theory 55 (2009), no. 4, 1730-1740. https://doi.org/10.1109/TIT.2009.2013015 -
H. Q. Dinh, Constacyclic codes of length
$p^s$ over$\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$ , J. Algebra 324 (2010), no. 5, 940-950. https://doi.org/10.1016/j.jalgebra.2010.05.027 -
H. Q. Dinh, Repeated-root constacyclic codes of length
$2p^s$ , Finite Fields & Appl. 18 (2012), 133-143. https://doi.org/10.1016/j.ffa.2011.07.003 -
H. Q. Dinh, Structure of repeated-root constacyclic codes of length
$3p^s$ and their duals, Discrete Math. 313 (2013), no. 9, 983-991. https://doi.org/10.1016/j.disc.2013.01.024 -
H. Q. Dinh, Repeated-root cyclic and negacyclic codes of length
$6p^s$ , in Ring theory and its applications, 69-87, Contemp. Math., 609, Amer. Math. Soc., Providence, RI, 2014. -
H. Q. Dinh, S. Dhompongsa, and S. Sriboonchitta, Repeated-root constacyclic codes of prime power length over
$\frac{\mathbb{F}_{p^m}[u]}{}$ and their duals, Discrete Math. 339 (2016), no. 6, 1706-1715. https://doi.org/10.1016/j.disc.2016.01.020 - H. Q. Dinh and S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728-1744. https://doi.org/10.1109/TIT.2004.831789
-
H. Q. Dinh, L. Wang, and S. Zhu, Negacyclic codes of length
$2p^s$ over$\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$ , Finite Fields & Appl., 31 (2015), 178-201. https://doi.org/10.1016/j.ffa.2014.09.003 -
S. Dougherty, P. Gaborit, M. Harada, and P. Sole, Type II codes over
$F_2 + uF_2$ , IEEE Trans. Inform. Theory 45 (1999), no. 1, 32-45. https://doi.org/10.1109/18.746770 - S. T. Dougherty and M. M. Skriganov, MacWilliams duality and the RosenbloomTsfasman metric, Mosc. Math. J. 2 (2002), no. 1, 81-97, 199.
- G. Falkner, B. Kowol, W. Heise, and E. Zehendner, On the existence of cyclic optimal codes, Atti Sem. Mat. Fis. Univ. Modena 28 (1979), no. 2, 326-341 (1980).
-
A. R. Hammons, P.V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The
$Z_4$ -linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319. https://doi.org/10.1109/18.312154 - W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
- K. Lee, The automorphism group of a linear space with the Rosenbloom-Tsfasman metric, European J. Combin. 24 (2003), no. 6, 607-612. https://doi.org/10.1016/S0195-6698(03)00077-5
-
S. Ling and P. Sole, Duadic codes over
$F_2 + uF_2$ , Appl. Algebra Engrg. Comm. Comput. 12 (2001), no. 5, 365-379. https://doi.org/10.1007/s002000100079 - J. L. Massey, D. J. Costello, and J. Justesen, Polynomial weights and code constructions, IEEE Trans. Information Theory IT-19 (1973), 101-110.
- A. A. Nechaev, Kerdock code in a cyclic form, Discrete Math. Appl. 1 (1991), no. 4, 365-384; translated from Diskret. Mat. 1 (1989), no. 4, 123-139.
- G. Norton and A. Salagean-Mandache, On the structure of linear and cyclic codes over a finite chain ring, Appl. Algebra Engrg. Comm. Comput. 10 (2000), no. 6, 489-506. https://doi.org/10.1007/PL00012382
- V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998.
- E. Prange, Cyclic Error-Correcting Codes in Two Symbols, (September 1957), TN-57-103.
- E. Prange, Some cyclic error-correcting codes with simple decoding algorithms, (April 1958), TN-58-156.
- E. Prange, The use of coset equivalence in the analysis and decoding of group codes, (1959), TN-59-164.
-
E. Prange, An algorithm for factoring
$x^n$ −1 over a finite field, (October 1959), TN-59-175. - M. Y. Rosenbloom and M. A. Tsfasman, Codes for the m-metric, Problems Inf. Trans. 33 (1997), 45-52.
- R. M. Roth and G. Seroussi, On cyclic MDS codes of length q over GF(q), IEEE Trans. Inform. Theory 32 (1986), no. 2, 284-285. https://doi.org/10.1109/TIT.1986.1057151
- M. M. Skriganov, On linear codes with large weights simultaneously for the RosenbloomTsfasman and Hamming metrics, J. Complexity 23 (2007), no. 4-6, 926-936. https://doi.org/10.1016/j.jco.2007.02.004
-
R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring GR(
$p^2$ , m), Discrete Appl. Math. 157 (2009), no. 13, 2892-2903. https://doi.org/10.1016/j.dam.2009.03.001 -
P. Udaya and A. Bonnecaze, Decoding of cyclic codes over
$F_2 + uF_2$ , IEEE Trans. Inform. Theory 45 (1999), no. 6, 2148-2157. https://doi.org/10.1109/18.782165 - J. H. van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), no. 2, 343-345. https://doi.org/10.1109/18.75250