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ON A CLASS OF CONSTACYCLIC CODES OF LENGTH 2ps

OVER
Fpm [u]

〈ua〉
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Abstract. The aim of this paper is to study the class of Λ-constacyclic

codes of length 2ps over the finite commutative chain ringRa =
Fpm [u]

〈ua〉 =

Fpm + uFpm + · · · + ua−1Fpm , for all units Λ of Ra that have the

form Λ = Λ0 + uΛ1 + · · · + ua−1Λa−1, where Λ0,Λ1, . . . ,Λa−1 ∈ Fpm ,

Λ0 6= 0, Λ1 6= 0. The algebraic structure of all Λ-constacyclic codes of
length 2ps over Ra and their duals are established. As an application,

this structure is used to determine the Rosenbloom-Tsfasman (RT) dis-

tance and weight distributions of all such codes. Among such constacyclic
codes, the unique MDS code with respect to the RT distance is obtained.

1. Introduction

The classes of cyclic and negacyclic codes in particular, and constacyclic
codes in general, play a very significant role in the theory of error-correcting
codes. Let F be a finite field of characteristic p and λ be a nonzero element
of F. λ-constacyclic codes of length n over F are classified as the ideals 〈g(x)〉
of the quotient ring F[x]/ 〈xn − λ〉, where the generator polynomial g(x) is the
unique monic polynomial of minimum degree in the code, which is a divisor of
xn − λ.

In fact, cyclic codes are the most studied of all codes. Many well known
codes, such as BCH, Kerdock, Golay, Reed-Muller, Preparata, Justesen, and
binary Hamming codes, are either cyclic codes or constructed from cyclic codes.
Cyclic codes over finite fields were first studied in the late 1950s by Prange
[29], [30], [31], [32], while negacyclic codes over finite fields were initiated by
Berlekamp in the late 1960s [2], [3]. The case when the code length n is
divisible by the characteristic p of the field yields the so-called repeated-root
codes, which were first studied since 1967 by Berman [4], and then in the 1970s
and 1980s by several authors such as Massey et al. [25], Falkner et al. [20], Roth
and Seroussi [34]. However, repeated-root codes were investigated in the most
generality in the 1990’s by Castagnoli et al. [7], and van Lint [38], where they
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showed that repeated-root cyclic codes have a concatenated construction, and
are asymptotically bad. Nevertheless, such codes are optimal in a few cases,
that motivates researchers to further study this class of codes.

After the realization in the 1990’s [6,21,26] by Nechaev and Hammons et al.,
codes over Z4 in particular, and codes over finite rings in general, has developed
rapidly in recent decade years. Constacyclic codes over a finite commutative
chain ring have been studied by many authors (see, for example, [1], [5], [27],
and [36]). The structure of constacyclic codes is also investigated over a special
family of finite chain rings of the form Fpm+uFpm . For example, the structure of
F2[u]
〈u2〉 is interesting, because this ring lies between F4 and Z4 in the sense that it

is additively analogous to F4, and multiplicatively analogous to Z4. Codes over
F2[u]
〈u2〉 have been extensively studied by many researchers, whose work includes

cyclic and self-dual codes [5], decoding of cyclic codes [37], Type II codes [18],
duadic codes [24], repeated-root constacyclic codes [10].

Recently, Dinh, in a series of papers ([12], [13], [14]), determined the gen-
erator polynomials of all constacyclic codes of lengths 2ps, 3ps and 6ps over
finite fields Fpm . We also have been studying certain classes of repeated-root
constacyclic codes over finite chain rings. For example, Dinh [11] classified all
constacyclic codes of length ps over Fpm + uFpm . Moreover, in 2015, Dinh et
al. [17] studied negacyclic codes of length 2ps over the ring Fpm + uFpm . Re-
cently, Chen et al. [8] determined the algebraic structures of all λ-constacyclic
codes of length 2ps over the finite commutative chain ring Fpm + uFpm and
provided the number of codewords and the dual of every λ-constacyclic code.
As a generalization of finite chain rings Fpm +uFpm (u2 = 0), finite chain rings

of the form
Fpm [u]
〈ua〉 = Fpm +uFpm + · · ·+ua−1Fpm (ua = 0) have been developed

as code alphabet as well. In a recent paper [15], we partitioned the units of the

chain ring Ra =
Fpm [u]
〈ua〉 = Fpm + uFpm + · · · + ua−1Fpm into a distinct types,

and studied Type 1 constacyclic codes of length ps over Ra in details. From
this, we showed that self-dual Λ-constacyclic codes of length ps over Ra exist
if and only if a is even, and in such case, it is unique.

Motivated by these, in this paper, we consider all Type 1 Λ-constacyclic
codes of length 2ps over Ra. The case that Λ is a square, say Λ = α2, is easy,

as the ambient ring Ra[x]
〈x2ps−Λ〉 can be decomposed as Ra[x]

〈xps+α〉 ⊕
Ra[x]
〈xps−α〉 . This

follows that each Type 1 Λ-constacyclic code of length 2ps over Ra is expressed
as a direct sum of C+ and C−, where C+ and C− are α and −α constacyclic
codes length ps over Ra, respectively. The classification, detailed structure,
and number of codewords of such α and −α constacyclic codes length ps were
investigated and provided in [15]. Thus, our main study concentrates in the
situation where the unit Λ is not a square inRa. With the observation that this
condition is equivalent to the condition that Λ0 is not a square in Fpm , we can

show that the ambient ring Ra[x]
〈x2ps−Λ〉 , in this case, is a chain ring. From that, we

get the algebraic structure of all Type 1 Λ-constacyclic codes of length 2ps and
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their duals. This structure is applied to establish the Rosenbloom-Tsfasman
distance and weight distributions of all such codes.

The rest of this paper is organized as follows. Preliminary concepts and
some properties of constacyclic codes over finite commutative rings are shown

in Section 2. We also give some results about the rings Ra =
Fpm [u]
〈ua〉 and their

units in this section. The algebraic structures of Type 1 Λ-constacyclic codes
of length 2ps over Ra and their duals are presented in Section 3. In Section
4, these structures are used to obtain the Rosenbloom-Tsfasman distance and
weight distributions of all such codes. The only MDS code, with respect to the
RT distance, among these constacyclic codes, is also identified.

2. Constacyclic codes over finite commutative rings

Let R be a finite commutative ring. An ideal I of R is called principal if it
is generated by one element. A ring R is a principal ideal ring if its ideals are
principal. A ring R is called a local ring if it has a unique maximal ideal. A
local ring is a chain ring if its lattice of ideals is a chain. A ring R is a finite
commutative chain ring if and only if R is a local ring and its maximal ideal is
principal.

The following equivalent conditions are well-known for the class of finite
commutative chain rings.

Proposition 2.1 (cf. [16, Proposition 2.1]). For a finite commutative ring R
the following conditions are equivalent:

(i) R is a local ring and the maximal ideal M of R is principal;
(ii) R is a local principal ideal ring;
(iii) R is a chain ring.

Let a be a fixed generator of the maximal ideal M of a finite commutative
chain ring R. Then a is nilpotent and we denote its nilpotency index by t. The
ideals of R form a chain:

R = 〈a0〉 ) 〈a1〉 ) · · · ) 〈at−1〉 ) 〈at〉 = 〈0〉.

Let R̄ = R
M . We consider the natural ring homomorphism ν : R[x] −→ R̄[x]

that maps r → r + M and the variable x to x. The following result is a well-
known fact about finite commutative chain rings.

Proposition 2.2. Let R be a finite commutative chain ring, with maximal
ideal M = 〈a〉, and let t be the nilpotency of a. Then

(i) For some prime p and positive integers k, l (k ≥ l), |R| = pk, |R̄| = pl,
and the characteristic of R and R̄ are powers of p;

(ii) For i = 0, 1, . . . , t, |〈ai〉| = |R̄|t−i. In particular, |R| = |R̄|t, i.e., k = lt.

Given n-tuples x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Rn, their
inner product or dot product is defined in the usual way:

x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1,
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evaluated in R. Two words x, y are called orthogonal if x · y = 0. For a linear
code C over R, its dual code C⊥ is the set of n-tuples over R that are orthogonal
to all codewords of C, i.e.,

C⊥ = {x | x · y = 0,∀y ∈ C}.

A code C is said to be self-orthogonal if C ⊆ C⊥, and it is said to be self-dual
if C = C⊥. The following result is appeared in [16,22,28].

Proposition 2.3. Let R be a finite chain ring of size pα. The number of
codewords in any linear code C of length n over R is pk, for some integer
k, 0 ≤ k ≤ αn. Moreover, the dual code C⊥ has pαn−k codewords, so that
|C| · |C⊥| = |R|n.

The Hamming weight of x is the number of nonzero components of x, denoted
by wt(x) for every word x = (x0, x1, . . . , xn−1) ∈ Rn. The Hamming distance
d(x, y) of two words x, y is the number of components in which they differ,
which is the Hamming weight wt(x− y) of x− y. For a nonzero linear code C,
the Hamming weight and the Hamming distance d(C) are the same. They are
defined as the smallest Hamming weight of nonzero codewords of C:

d(C) = min{wt(x) | x 6= 0, x ∈ C}.

The zero code is conventionally said to have Hamming distance 0.
Given an n-tuple (x0, x1, . . . , xn−1) ∈ Rn, the cyclic shift τ and negacyclic

shift ν on Rn are defined as usual, i.e.,

τ(x0, x1, . . . , xn−1) = (xn−1, x0, x1, . . . , xn−2),

and

ν(x0, x1, . . . , xn−1) = (−xn−1, x0, x1, . . . , xn−2).

A code C is called cyclic if τ(C) = C, and C is called negacyclic if ν(C) = C.
More generally, if λ is a unit of the ring R, then the λ-constacyclic (λ-twisted)
shift τλ on Rn is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, . . . , xn−2),

and a code C is said to be λ-constacyclic if τλ(C) = C, i.e., if C is closed under
the λ-constacyclic shift τλ. From this definition, when λ = 1, λ-constacyclic
codes are cyclic codes, and when λ = −1, λ-constacyclic codes are just nega-
cyclic codes.

Each codeword c = (c0, c1, . . . , cn−1) is customarily identified with its poly-
nomial representation c(x) = c0 + c1x + · · · + cn−1x

n−1, and the code C is in
turn identified with the set of all polynomial representations of its codewords.

Then in the ring R[x]
〈xn−λ〉 , xc(x) corresponds to a λ-constacyclic shift of c(x).

From this, the following fact is straightforward:

Proposition 2.4. A linear code C of length n is λ-constacyclic over R if and

only if C is an ideal of R[x]
〈xn−λ〉 .
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We knew that the dual of a cyclic code is a cyclic code, and the dual of a
negacyclic code is a negacyclic code. In general, the dual of a λ-constacyclic
code is a λ−1-constacyclic code (see, for example, [11], [13]).

The following result is also a fact appeared in [11], [13].

Proposition 2.5. Let R be a finite commutative ring, λ be a unit of R and

a(x) = a0 + a1x+ · · ·+ an−1x
n−1, b(x) = b0 + b1x+ · · ·+ bn−1x

n−1 ∈ R[x].

Then a(x)b(x) = 0 in R[x]
〈xn−λ〉 if and only if (a0, a1, . . . , an−1) is orthogonal to

(bn−1, bn−2, . . . , b0) and all its λ−1-constacyclic shifts.

For a nonempty subset S of the ring R, the annihilator of S, denoted by
ann(S), is the set

ann(S) = {f ∈ R | fg = 0 for all g ∈ S}.
Then ann(S) is an ideal of R.

For a polynomial f of degree k, the polynomial xkf(x−1) is called reciprocal
polynomial of polynomial f. The reciprocal polynomial of f will be denoted
by f∗. Suppose that f(x) = a0 + a1x+ · · ·+ ak−1x

k−1 + akx
k. Then f∗(x) =

xk(a0 +a1x
−1 + · · ·+ak−1x

−(k−1) +akx
−k) = ak+ak−1x+ · · ·+a1x

k−1 +a0x
k.

Note that (f∗)∗ = f if and only if the constant term of f is nonzero, if and only
if deg(f) = deg(f∗). We denote A∗ = {f∗(x) | f(x) ∈ A}. It is easy to see that
if A is an ideal, then A∗ is also an ideal. Since the dual of a λ-constacyclic code
is a λ−1-constacyclic code, C⊥ is a λ−1-constacyclic codes of length n over R,

and hence, C⊥ is an ideal of the ring R[x]
〈xn−λ−1〉 , by Proposition 2.4. It is clear

that ann∗(C) is also an ideal of R[x]
〈xn−λ−1〉 . Therefore, applying Proposition 2.5,

we can conclude that g(x) ∈ ann∗(C) if and only if g(x) = f∗(x) for some
f(x) ∈ ann(C), if and only if g(x) ∈ C⊥. Then, we have a following result.

Proposition 2.6. Let R be a finite commutative ring, and λ be a unit of R.
Assume that C is a λ-constacyclic code of length n over R. Then the dual C⊥

of C is ann∗(C).

We provide some results about the rings Ra =
Fpm [u]
〈ua〉 = Fpm + uFpm + · · ·+

ua−1Fpm and its unit. The following result is introduced in [15].

Proposition 2.7 ([15, Proposition 3.1]). Let Ra =
Fpm [u]
〈ua〉 = Fpm + uFpm +

· · ·+ ua−1Fpm . Then

(i) Ra is a chain ring with maximal ideal 〈u〉Ra , and residue field Fpm .

(ii) The ideals of Ra are
〈
ui
〉
Ra

= uiRa, 0 ≤ i ≤ a, each ideal
〈
ui
〉
Ra

contains pm(a−i) elements.
(iii) Ra has (pm − 1)pm(a−1) units, they are of the form

α0 + uα1 + · · ·+ ua−1αa−1,

where α0, α1, . . . , αa−1 ∈ Fpm , α0 6= 0.
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Suppose that C is a code of length n over Ra. We denote iC , the smallest
integer such that there is a nonzero component of a codeword of C belonging
to
〈
uiC
〉
Ra
\
〈
uiC+1

〉
Ra

. Clearly, 0 ≤ iC ≤ a− 1, and C ⊆
〈
uiC
〉n
Ra
⊆ Rna .

In the following results, constacyclic codes over the chain ring Ra are inves-
tigated.

Proposition 2.8 ([15, Proposition 3.2]). Let Λ be a unit of Ra. If a code C of
length n is Λ-constacyclic over Ra, then C is also Γ-constacyclic for any unit
Γ such that Γ− Λ ∈

〈
uj
〉
Ra

for every j ≥ a− iC .

Proposition 2.9 ([15, Proposition 3.3]). Let C be a code of length n over Ra,
and Λ, Λ′ be units of Ra such that Λ−Λ′ ∈

〈
uj
〉
Ra
\
〈
uj+1

〉
Ra

, 0 ≤ j ≤ a−iC . If

C is both Λ- and Λ′-constacyclic over Ra, then
〈
uj+iC

〉n
Ra
⊆ C. In particular,

if Λ− Λ′ is a unit, then C =
〈
uiC
〉n
Ra

.

In [15], the units of Ra are separated into a distinct types. A unit α =
α0 + uα1 + · · · + ua−1αa−1 of Ra is said to be of Type k, if k is the smallest
index such that αk 6= 0 for an integer k ∈ {1, . . . , a − 1}. Moreover, if α0 = 1,
then 1 + uα1 + · · · + ua−1αa−1 is said to be of Type k∗. If αi = 0 for all
1 ≤ i ≤ a − 1, i.e., the unit is of the form α = α0 ∈ Fpm , we say that α
is of Type 0 (or Type 0∗ if α0 = 1). Ra has pm − 1 units of Type 0, and
(pm − 1)2pm(a−k−1) units of Type k, showing that Ra has pm − 1 Type 0
constacyclic codes and (pm − 1)2pm(a−k−1) Type k constacyclic codes.

We now suppose that Λ is a unit of Type k of Ra. Then Λ can be expressed
as following:

Λ = Λ0 + ukΛk + · · ·+ ua−1Λa−1,

where Λ0,Λk, . . . ,Λa−1 ∈ Fpm , Λ0 6= 0, Λk 6= 0, and 1 ≤ k ≤ a − 1. Let λ =

1 + ukλk + · · ·+ ua−1λa−1, for k ≤ i ≤ a− 1, λi = ΛiΛ
−1
0 ∈ Fpm . Then we can

see that λ is a unit of Type k∗ such that Λ = Λ0λ. It is easy to verify that in
the case of Λ is a unit of Type 0 and λ is of Type 0∗, we also have Λ = Λ0λ.
The unit of Λ is determined in the following proposition.

Proposition 2.10 ([15]). Let Λ = Λ0 +uΛ1 + · · ·+ua−1Λa−1 be a unit of Ra,
and t be the smallest positive integer such that ptm ≥ a. Then

(a) Λ−1 = Λp
tm−1Λ−1

0 .
(b) If Λ is of Type k, for 1 ≤ k ≤ a−1, i.e., Λ = Λ0+ukΛk+· · ·+ua−1Λa−1,

where Λ0 6= 0, Λk 6= 0, then Λ−1 is also of Type k. More precisely,

Λ−1 = Λ−1
0 + ukΛ′k + · · ·+ ua−1Λ′a−1,

where Λ′k 6= 0. If Λ is of Type 0, i.e., Λ = Λ0, then Λ−1 = Λ−1
0 , which

is of Type 0. In particular, for 0 ≤ ` ≤ a − 1, Λ is of Type ` (resp.
Type `∗) if and only if Λ−1 is of Type ` (resp. Type `∗).

(c) Let Λ be of Type k, for 1 ≤ k ≤ a − 1. If Λ = Λ−1, then p = 2, and
k ≥ a/2 (if a is even) or k ≥ ba/2c + 1 (if a is odd). More precisely,
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in such case, the units Λ such that Λ = Λ−1 are precisely units of the
form

Λ = 1 +

a−1∑
i=a/2

uiΛii if a is even, or

Λ = 1 +

a−1∑
i=ba/2c+1

uiΛii if a is odd,

where Λi ∈ F2m .

Let Λ-constacyclic code of length n over Ra. We give the necessary and
sufficient condition to have a self-dual of Λ-constacyclic code introduced in
[15].

Proposition 2.11 ([15]). Let Λ = Λ0 + uΛ1 + · · · + ua−1Λa−1 be a unit of
Ra such that Λ2

0 6= 1. Then there is a self-dual Λ-constacyclic code of length n

over Ra if and only if a is even. In such case,
〈
ua/2

〉n
Ra

is the unique self-dual

Λ-constacyclic code of length n over Ra.

Remark 2.12 ([15]). When a is even,
〈
ua/2

〉n
Ra

is always a self-dual Λ-consta-

cyclic codes of length n over Ra for any unit Λ, without the condition Λ2
0 6= 1.

However, when Λ2
0 = 1,

〈
ua/2

〉n
Ra

may not be the only self-dual Λ-constacyclic

codes.

3. Type 1 Λ-constacyclic codes of length 2ps over Ra

The algebraic structure of all Type 1 Λ-constacyclic codes of length 2ps over
Fpm + uFpm is recently obtained in [8]. Motivated by this, we can study the
Λ-constacyclic codes of length 2ps over Ra.

In this paper, we study Λ-constacyclic codes of length 2ps over Ra and its
dual, where Λ is a unit of Type 1 of Ra. This means that Λ has the following
form:

Λ = Λ0 + uΛ1 + · · ·+ ua−1Λa−1,

where Λ0,Λ1, . . . ,Λa−1 ∈ Fpm , Λ0 6= 0, Λ1 6= 0. By Proposition 2.4, we know
that these codes are ideals of the ring

Sa(s,Λ) =
Ra[x]

〈x2ps − Λ〉
.

From Proposition 2.10, Λ−1 is also a unit of Type 1, which can be written as
follows.

Λ−1 = Λ−1
0 + uΛ′1 + · · ·+ ua−1Λ′a−1,

where Λ′1 6= 0.
If the unit Λ is a square in Ra, i.e., there exists a unit α ∈ Ra such that

Λ = α2. Then we have

x2ps − Λ = x2ps − α2 = (xp
s

+ α)(xp
s

− α).
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Applying the Chinese remainder theorem, we can see that

Sa(s,Λ) =
Ra[x]

〈xps + α〉
⊕ Ra[x]

〈xps − α〉
.

This follows that all ideals of Sa(s,Λ) are of the form A ⊕ B, where A and

B are ideals of Ra[x]
〈xps+α〉 and Ra[x]

〈xps−α〉 , respectively, i.e., they are −α- and α-

constacyclic codes of length ps over Ra. Hence, if Λ is a square in Ra, a Type
1 Λ-constacyclic code of length 2ps over Ra is expressed as a direct sum of C+

and C−:

C = C+ ⊕ C−,

where C+ and C− are ideals of Ra[x]
〈xps+α〉 and Ra[x]

〈xps−α〉 , respectively. The classifi-

cation, detailed structure, and number of codewords of α and −α constacyclic
codes length ps were investigated in [15]. Thus, when Λ is a square in Ra, we
can obtain Λ-constacyclic codes C of length 2ps over Ra from that of the direct
summands C+ and C− (cf. [15]). Hence, we can prove that the dual code C⊥

of C is also a direct sum of the dual codes of the direct summand C⊥+ and C⊥− .

Theorem 3.1. Let the unit Λ = α2 ∈ Ra, and C = C+⊕C− be a constacyclic

code of length 2ps over Ra, where C+, C− are ideals of Ra[x]
〈xps+α〉 ,

Ra[x]
〈xps−α〉 ,

respectively. Then

C⊥ = C⊥+ ⊕ C⊥− .

In particular, C is a self-dual Λ-constacyclic code of length 2ps over Ra if and
only if C+, C− are self-dual −α-constacyclic code and self-dual α-constacyclic
code of length ps over Ra, respectively.

Proof. It is easy to verify that C⊥+ ⊕ C⊥− ⊆ C⊥. On the other hand,

|C⊥+ ⊕ C⊥− | = |C⊥+ | · |C⊥− | =
|Ra|p

s

|C+|
· |Ra|

ps

|C−|
=
|Ra|2p

s

|C+| · |C−|
=
|Ra|2p

s

|C|
= |C⊥|.

This implies that C⊥ = C⊥+ ⊕ C⊥− . �

Therefore, we only need to concentrate on the main case where Λ is not a
square in Ra. We first start by characterizing this condition.

Proposition 3.2. Let Λ = Λ0+uΛ1+· · ·+ua−1Λa−1, Λ0,Λ1, . . . ,Λa−1 ∈ Fpm ,
Λ0 6= 0, Λ1 6= 0, be a unit of Type 1 of Ra. Then Λ is not a square if and only
if Λ0 is not a square.

Proof. Suppose that Λ′20 = Λ0, we consider (Λ′0 + uΛ′1 + u2Λ′2 + u3Λ′3 + · · · +
ua−1Λ′a−1)2, where Λ′i ∈ Fpm . Assume that (Λ′0 + uΛ′1 + u2Λ′2 + u3Λ′3 + · · · +
ua−1Λ′a−1)2 = Λ0 + uΛ1 + · · ·+ ua−1Λa−1.
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Case 1: a is even. We have

Λ0 + uΛ1 + · · ·+ ua−1Λa−1 = (Λ′0 + uΛ′1 + u2Λ′2 + u3Λ′3 · · ·+ ua−1Λ′a−1)2

= Λ′20 + u(2Λ′0Λ′1) + u2(Λ′21 + 2Λ′0Λ′2) + · · ·

+ u2t(2Λ′2tΛ
′
0 + Λ′2t + 2

∑
j+k=2t

Λ′jΛ
′
k)+

+ u2t+1(2Λ′2t+1Λ′0 + 2
∑

c+d=2t+1

Λ′cΛ
′
d) + · · ·

+ ua−1(2Λ′a−1Λ′0 + 2
∑

l+h=a−1

Λ′lΛ
′
h),

where 0 < j, k < 2t < a − 1, 0 < c, d < 2t + 1 < a − 1, and 0 < l, h < a − 1.
Comparing coefficients, we have

Λ0 = Λ′20 ,

Λ1 = 2Λ′0Λ′1,

Λ2 = Λ′21 + 2Λ′0Λ′2,

...

Λ2t = 2Λ′2tΛ
′
0 + Λ′2t + 2

∑
j+k=2t

Λ′jΛ
′
k,

Λ2t+1 = 2Λ′2t+1Λ′0 + 2
∑

c+d=2t+1

Λ′cΛ
′
d,

...

Λa−1 = 2Λ′a−1Λ′0 + 2
∑

l+h=a−1

Λ′lΛ
′
h.

Since Λ′−1
0 exists, we can compute

Λ′1 = 2−1Λ′−1
0 Λ1,

Λ′2 = 2−1Λ′−1
0 (Λ2 − Λ′21 ),

Λ′3 = 2−1Λ′−1
0 (Λ3 − 2Λ′1Λ′2),

...

Λ′2t = 2−1Λ′−1
0 (Λ2t − Λ′2t − 2

∑
j+k=2t

Λ′jΛ
′
k),

Λ′2t+1 = 2−1Λ′−1
0 (Λ2t+1 − 2

∑
c+d=2t+1

Λ′cΛ
′
d),

...
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Λ′a−1 = 2−1Λ′−1
0 (Λa−1 − 2

∑
l+h=a−1

Λ′lΛ
′
h),

where 0 < j, k < 2t < a − 1, 0 < c, d < 2t + 1 < a − 1, and 0 < l, h <
a− 1. Therefore, for each Λi, we can determine Λ′i such that Λ0 + uΛ1 + · · ·+
ua−1Λa−1 = (Λ′0 + uΛ′1 + · · ·+ ua−1Λ′a−1)2, proving that Λ is a square.

Case 2: a is odd. Suppose that

Λ0 + uΛ1 + · · ·+ ua−1Λa−1 = (Λ′0 + uΛ′1 + u2Λ′2 + u3Λ′3 · · ·+ ua−1Λ′a−1)2

= Λ′20 + u(2Λ′0Λ′1) + u2(Λ′21 + 2Λ′0Λ′2) + · · ·

+ u2t(2Λ′2tΛ
′
0 + Λ′2t + 2

∑
j+k=2t

Λ′jΛ
′
k)+

+ u2t+1(2Λ′2t+1Λ′0 + 2
∑

c+d=2t+1

Λ′cΛ
′
d) + · · ·

+ ua−1(2Λ′a−1Λ′0 + Λ′2a−1
2

+ 2
∑

j+k=a−1

Λ′jΛ
′
k).

Similar to the case 1, we compare coefficients. Then we have

Λ′1 = 2−1Λ′−1
0 Λ1,

Λ′2 = 2−1Λ′−1
0 (Λ2 − Λ′21 ),

Λ′3 = 2−1Λ′−1
0 (Λ3 − 2Λ′1Λ′2),

...

Λ′2t = 2−1Λ′−1
0 (Λ2t − Λ′2t − 2

∑
j+k=2t

Λ′jΛ
′
k),

Λ′2t+1 = 2−1Λ′−1
0 (Λ2t+1 − 2

∑
c+d=2t+1

Λ′cΛ
′
d),

...

Λ′a−1 = 2−1Λ′−1
0 (Λa−1 − Λ′2a−1

2

− 2
∑

l+h=a−1

Λ′lΛ
′
h),

where 0 < j, k < 2t < a−1, 0 < c, d < 2t+1 < a−1, and 0 < l, h < a−1. Hence,
we can express Λ0 + uΛ1 + · · ·+ ua−1Λa−1 = (Λ′0 + uΛ′1 + · · ·+ ua−1Λ′a−1)2.

Combining Cases 1 and 2, Λ is not a square if and only if Λ0 is not a
square. �

From this, we can prove the following result.

Proposition 3.3. Any nonzero linear polynomial cx+ d ∈ Fpm [x] is invertible
in Sa(s,Λ).

Proof. In Sa(s,Λ), we have

(x+d)p
s

(x−d)p
s

= (x2−d2)p
s

= x2ps−d2ps = (Λ0−d2ps)+uΛ1+· · ·+ua−1Λa−1.
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Since Λ0 is not a square in Fpm , Λ0 − d2ps is invertible in Fpm . This follows

that (Λ0 − d2ps) + uΛ1 + · · ·+ ua−1Λa−1 is invertible in Sa(s,Λ). Thus,

(x+ d)−1 = (x+ d)p
s−1(x− d)p

s

(Λ0 − d2ps + uΛ1 + · · ·+ ua−1Λa−1)−1.

Therefore, for any c 6= 0 in Fpm ,

(cx+ d)−1 = c−1(x+ c−1d)−1

= c−1(x+ c−1d)p
s−1(x− c−1d)p

s

(Λ0 − c−2psd2ps + uΛ1 + · · ·+ ua−1Λa−1)−1. �

Since Λ0 ∈ Fpm , we have Λp
tm

0 = Λ0 for any positive integer t. By the
Division Algorithm, there exist nonnegative integers αq, αr such that s =

αqm + αr, and 0 ≤ αr ≤ m − 1. Let α0 = Λp
(αq+1)m−s

0 = Λp
m−αr

0 . Then

αp
s

0 = Λp
(αq+1)m

0 = Λ0. The following provides the key to prove that the ring
Sa(s,Λ) is a chain ring.

Lemma 3.4. In Sa(s,Λ), we have 〈(x2 − α0)p
s〉 = 〈u〉. In particular, x2 − α0

is nilpotent with nipotency index aps.

Proof. The results follow from the fact that in Sa(s,Λ), (x2 − α0)p
s

= x2ps −
Λ0 = uΛ1 + · · ·+ ua−1Λa−1. �

Any element f(x) of Sa(s,Λ) can be expressed as a polynomial of degree up
to 2ps − 1 of Ra[x], and so f(x) = f1(x) + uf2(x) + · · · + ua−1fa(x), where
f1(x), f2(x), . . . , fa(x) are polynomials of degrees up to 2ps−1 of Fpm [x]. Thus,
f(x) can be uniquely represented as

f(x) =

ps−1∑
i=0

(c0ix+ d0i)(x
2 − α0)i + u

ps−1∑
i=0

(c1ix+ d1i)(x
2 − α0)i + · · ·

+ ua−1

ps−1∑
i=0

(c(a−1)ix+ d(a−1)i)(x
2 − α0)i

= (c00x+ d00) + (x2 − α0)

ps−1∑
i=1

(c0ix+ d0i)(x
2 − α0)i−1

+ u

ps−1∑
i=0

(c1ix+ d1i)(x
2 − α0)i + · · ·

+ ua−1

ps−1∑
i=0

(c(a−1)ix+ d(a−1)i)(x
2 − α0)i,

where c0i, d0i, . . . , c(a−1)i, d(a−1)i ∈ Fpm . By Lemma 3.4, u ∈ 〈x2 − α0〉, and so
f(x) can be written as

f(x) = (c00x+ d00) + (x2 − α0)g(x).
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Thus, f(x) is non-invertible if and only if c00 = d00 = 0, i.e., f(x) ∈ 〈x2 − α0〉.
It means that 〈x2−α0〉 forms the set of all non-invertible elements ofRa. Thus,
Sa(s,Λ) is a local ring with maximal ideal 〈x2−α0〉, hence, by Proposition 2.1,
Sa(s,Λ) is a chain ring. We summarize the discussion above in the following
theorem.

Theorem 3.5. The ring Sa(s,Λ) is a chain ring with maximal ideal 〈x2−α0〉,
whose ideals are

Sa(s,Λ) = 〈1〉 ) 〈x2 − α0〉 ) · · · ) 〈(x2 − α0)ap
s−1〉 ) 〈(x2 − α0)ap

s

〉 = 〈0〉.
From Theorem 3.5, we now can give the structure of Type 1 Λ-constacyclic

codes of length 2ps over Ra, and their sizes as follows.

Theorem 3.6. Type 1 Λ-constacyclic codes of length 2ps over Ra are precisely
the ideals 〈(x2 − α0)i〉 ⊆ Ra, where 0 ≤ i ≤ aps. Each Type 1 Λ-constacyclic
code 〈(x2 − α0)i〉 has p2m(aps−i) codewords.

For a Type 1 Λ-constacyclic code C = 〈(x2 − α0)i〉 ⊆ Ra of length 2ps

over Ra, by Proposition 2.5 and Proposition 2.10, its dual C⊥ is a Type 1
Λ−1-constacyclic code of length 2ps over Ra. This means

C⊥ ⊆ Sa(s,Λ−1) =
Ra[x]

〈x2ps − Λ−1〉
.

Hence, Lemma 3.4 and Theorem 3.5 are applicable for C⊥ and Sa(s,Λ−1).
Therefore, similar to the case of Sa(s,Λ), we can prove that Sa(s,Λ−1) is a
chain ring.

Theorem 3.7. The ring Sa(s,Λ−1) is a chain ring with maximal ideal 〈x2 −
α−1

0 〉, whose ideals are

Sa(s,Λ−1)=〈1〉 ) 〈x2−α−1
0 〉 ) · · · ) 〈(x2−α−1

0 )ap
s−1〉 ) 〈(x2−α−1

0 )ap
s

〉 = 〈0〉.
In other words, Type 1 Λ−1-constacyclic codes of length 2ps over Ra are pre-
cisely the ideals 〈(x2 − α−1

0 )i〉 ⊆ Sa(s,Λ−1), where 0 ≤ i ≤ aps. Each Type 1
Λ−1-constacyclic code 〈(x2 − α−1

0 )i〉 ⊆ Sa(s,Λ−1) has p2mi codewords.

Applying Theorem 3.7, we now can describe the duals of Type 1 Λ-consta-
cyclic codes in the following corollary.

Corollary 3.8. Let C be a Type 1 Λ-constacyclic code of length 2ps over Ra.
Then C = 〈(x2 − α0)i〉 ⊆ Ra, for some i ∈ {0, 1, . . . , aps}, and its dual C⊥ is
the Type 1 Λ−1-constacyclic code

C⊥ =
〈

(x2 − α−1
0 )ap

s−i
〉
⊆ Ra.

Proof. Let C = 〈(x2 − α0)i〉 ⊆ Sa(s,Λ) be a Type 1 Λ-constacyclic code of
length 2ps over Ra. Then, C⊥ is an ideal of Sa(s,Λ−1). By Theorem 3.7,
|C| = p2m(aps−i), and hence, by Proposition 2.3,

|C⊥| = |Ra|
2ps

|C|
=

p2maps

p2m(aps−i) = p2mi.
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From Theorem 3.7, we have C⊥ =
〈
(x2 − α−1

0 )ap
s−i〉 ⊆ Sa(s,Λ−1). �

4. Rosenbloom-Tsfasman distance

In 1997, Rosenbloom and Tsfasman [33] introduced a new distance in coding
theory, which was later named after them as the Rosenbloom-Tsfasman (RT)
distance. Well-known bounds for distances such as the Singleton bound, the
Plotkin bound, the Hamming bound, and the Gilbert bound were derived for
the RT distance. Since then, there are many other studies focusing on codes
with respect to this RT metric (see, for example, [9, 19,23,35]).

For any finite commutative ring R, the Rosenbloom-Tsfasman weight (RT
weight) (see [33]) of an n-tuple x = (x0, x1, . . . , xn−1) ∈ Rn is defined as follows:

wtRT(x) =

{
1 + max{j |xj 6= 0}, if x 6= 0;

0, if x = 0.

The Rosenbloom-Tsfasman distance (RT distance) of any two n-tuples x,y of
Rn is defined as:

dRT(x,y) = wtRT(x− y).

Let C be a code of length n over R. Then

dRT(C) = min{dRT(c, c′) | c 6= c′ ∈ C}
is called the RT distance of C.

In this section we proceed to compute the Rosenbloom-Tsfasman distances
of all Λ-constacyclic codes of length 2ps over the ring Ra for any unit Λ of
Type 1 of Ra such that Λ is not a square. We start with an observation, that
is followed readily from the definition of the RT weight.

Proposition 4.1. Let c = (c0, c1, . . . , cn−1) ∈ Rn be a word of length n over
R, and c(x) be its polynomial presentation. Then

wtRT(c) =

{
1 + deg(c(x)), if c 6= 0;

0, if c = 0.

Theorem 4.2. Let Λ be a unit of Type 1 of Ra such that Λ is not a square.
Assume that C is a Λ-constacyclic code of length 2ps over Ra, i.e., C = 〈(x2−
α0)i〉 ⊆ Sa(s,Λ) for some i ∈ {0, 1, . . . , aps}. Then the Rosenbloom-Tsfasman
distance dRT(C) of C is completely determined as follows.

dRT(C) =


0 if i = aps ,

1 if 0 ≤ i ≤ (a− 1)ps ,

2i− 2(a− 1)ps + 1 if (a− 1)ps + 1 ≤ i ≤ aps − 1.

Proof. If i = aps, the code C is just the zero code, and the result follows
trivially. By Lemma 3.4 and Theorem 3.5, when 0 ≤ i ≤ (a− 1)ps,〈

(x2 − α0)i
〉
⊇
〈

(x2 − α0)(a−1)ps
〉

=
〈
ua−1

〉
,
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which implies that the RT distance of the code
〈
(x2 − α0)i

〉
is 1. Consider the

case (a− 1)ps + 1 ≤ i ≤ aps − 1, we have〈
(x2 − α0)i

〉
=
〈

(x2 − α0)(a−1)ps(x2 − α0)i−(a−1)ps
〉

=
〈
ua−1(x2 − α0)i−(a−1)ps

〉
.

It suffices to show that, in each ideal
〈
ua−1(x2 − α0)i−(a−1)ps

〉
, the generator

polynomial ua−1(x2−α0)i−(a−1)ps is of smallest degree, which is 2i−2(a−1)ps.
Hence, in light of Proposition 4.1, its RT distance is 2i−2(a−1)ps+1. Suppose
that f(x) is a nonzero polynomial in

〈
ua−1(x2 − α0)i−(a−1)ps

〉
of degree 0 ≤

k < 2i− 2(a− 1)ps, then f(x) can be expressed as

f(x) =

k∑
j=0

(cjx+ dj)(x
2 − α0)j ,

where cj , dj ∈ Ra. Let ` (0 ≤ ` ≤ k) be the smallest index such that cjx+dj 6= 0,
then

f(x) = (x2 − α0)`
k∑
j=`

(cjx+ dj)(x
2 − α0)j−`

= (x2 − α0)`(c`x+ d`)
[
1 + (x2 − α0)g(x)

]
,

where

g(x) =


0, if ` = k,

(c`x+ d`)
−1

k∑
j=`+1

(cjx+ dj)(x
2 − α0)j−`−1, if 0 ≤ ` < k,

∈ Sa(s,Λ).

Since, in Sa(s,Λ), x2 − α0 is nilpotent, there is an odd integer t such that
(x2 − α0)t = 0, we get

1 = 1 +
[
(x2 − α0)g(x)

]t
=
[
1 + (x2 − α0)g(x)

][
1− (x2 − α0)g(x) + (x2 − α0)2g(x)2 − · · ·+ (x2 − α0)t−1g(x)t−1

]
,

implying that 1 + (x2 − α0)g(x) is invertible in Sa(s,Λ). Therefore, f(x) =
(x2−α0)`h(x) for some unit h(x) of Sa(s,Λ). That means f(x) ∈ 〈(x2−α0)`〉,
but f(x) 6∈ 〈(x2 − α0)`+1〉, and in particular, f(x) 6∈C. Thus, we have shown
that any nonzero polynomial of degree less than 2i − 2(a − 1)ps is not in C,
i.e., the smallest degree of nonzero polynomials in C is 2i − 2(a − 1)ps, as
desired. �
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Proposition 4.3. For (a− 1)ps + 1 ≤ i ≤ aps − 1, the RT weight distribution
of the Type 1 Λ-constacyclic code 〈(x2 − α0)i〉 ⊆ Sa(s,Λ) is as follows.

Aj =


1 if j = 0,

0 if 1 ≤ j ≤ 2i− 2(a− 1)ps,

(pm − 1)pmk if j = 2i− 2(a− 1)ps + 1 + k

for 0 ≤ k ≤ 2aps − 2i− 1,

where Aj is the number of codewords of RT weight j of 〈(x2 − α0)i〉.

Proof. As in the proof of Theorem 4.2, when (a − 1)ps + 1 ≤ i ≤ aps − 1,〈
(x2 − α0)i

〉
=
〈
ua−1(x2 − α0)i−(a−1)ps

〉
, and so Aj = 0 for 1 ≤ j ≤ 2i− 2(a−

1)ps. When 2i− 2(a− 1)ps + 1 ≤ j ≤ 2ps, say, j = 2i− 2(a− 1)ps + 1 + k, for
0 ≤ k ≤ 2aps − 2i− 1, then Aj is the number of distinct polynomials of degree
k in Fpm [x]. Thus, Aj = (pm − 1)pmk. �

When i = pst, 0 ≤ t ≤ a−1, by Lemma 3.4, the ideals 〈(x2−α0)i〉 = 〈ut〉 ⊆
Sa(s,Λ). Thus, we get their weight distributions as follows.

Proposition 4.4. For i = pst, 0 ≤ t ≤ a − 1, the RT weight distribution of
the Λ-constacyclic code 〈(x2 − α0)i〉 ⊆ Sa(s,Λ) is as follows.

Aj =

{
1 if j = 0,(
pm(a−t) − 1

)
pm(a−t)(j−1) if 1 ≤ j ≤ 2ps,

where Aj is the number of codewords of RT weight j of 〈(x2 − α0)i〉.

Proposition 4.5. Let 1 ≤ b ≤ a − 1. For (b − 1)ps + 1 ≤ i ≤ bps − 1, the
RT weight distribution of the Λ-constacyclic code 〈(x2 − α0)i〉 ⊆ Sa(s,Λ) is as
follows.

Aj =



1 if j = 0,(
pm(a−b) − 1

)
pm(a−b)(j−1) if 1 ≤ j ≤ 2i− 2(b− 1)ps,

p2m(a−b)ps(pm − 1)pmk +
(
pm(a−b) − 1

)
pm(a−b)(j−1)

if j = 2i− 2(b− 1)ps + 1 + k for 0 ≤ k ≤ 2bps − 2i− 1,

where Aj is the number of codewords of RT weight j of 〈(x2 − α0)i〉.

Proof. We have (b−1)ps+1 ≤ i ≤ (b−1)ps+ps−1, i.e., 1 ≤ i−(b−1)ps ≤ ps−1,
so by Lemma 3.4,〈

ub−1(x2 − α0)
〉
⊇
〈
(x2 − α0)i

〉
=
〈
ub−1(x2 − α0)i−p

s(b−1)
〉

⊇
〈
ub−1(x2 − α0)p

s−1
〉
)
〈
ub
〉
.

Let Bj be the number of codewords of RT weight j of 〈(x2 − α0)i〉, which are
not in 〈ub〉; and B′j be the number of codewords of RT weight j of 〈ub〉. Then,
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for all j, Aj = Bj +B′j . Similar to Proposition 4.3, we get

Bj =


0 if j = 0,

0 if 1 ≤ j ≤ 2i− 2(b− 1)ps,

p2m(a−b)ps(pm − 1)pmk if j = 2i− 2(b− 1)ps + 1 + k

for 0 ≤ k ≤ 2bps − 2i− 1.

Clearly, by Proposition 4.4,

B′j =

{
1 if j = 0,(
pm(a−b) − 1

)
pm(a−b)(j−1) if 1 ≤ j ≤ 2ps.

Therefore,

Aj =



1 if j = 0,(
pm(a−b) − 1

)
pm(a−b)(j−1) if 1 ≤ j ≤ 2i− 2(b− 1)ps,

p2m(a−b)ps(pm − 1)pmk +
(
pm(a−b) − 1

)
pm(a−b)(j−1)

if j = 2i− 2(b− 1)ps + 1 + k for 0 ≤ k ≤ 2bps − 2i− 1. �

Remark 4.6. Propositions 4.3, 4.4, and 4.5 give us the RT weight distributions
for all λ-constacyclic codes Ci = 〈(x2 − α0)i〉 ⊆ Sa(s,Λ) of length 2ps over

Ra. By Theorem 3.5, |Ci| = p2m(aps−i). As |Ci| =
∑2ps

j=0Aj , these RT weight

distributions can be used to verify the size |Ci| of such codes.

• If (a− 1)ps + 1 ≤ i ≤ aps − 1, then

|Ci| =
2ps∑
j=0

Aj

= 1 +

2aps−2i−1∑
k=0

(pm − 1)pmk

= 1 + (pm − 1)

2aps−2i−1∑
k=0

(pm)k

= 1 + (pm − 1)
pm(2aps−2i) − 1

pm − 1

= p2m(aps−i).

• If i = pst, 0 ≤ t ≤ a− 1, then

|Ci| =
2ps∑
j=0

Aj
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= 1 +

2ps∑
j=1

(
pm(a−t) − 1

)
pm(a−t)(j−1)

= 1 +
(
pm(a−t) − 1

) 2ps−1∑
j=0

pm(a−t)j

= 1 +
(
pm(a−t) − 1

) pm(a−t)2ps − 1

pm(a−t) − 1

= p2m(a−t)ps

= p2m(aps−i).

• If (b− 1)ps + 1 ≤ i ≤ bps − 1, where 1 ≤ b ≤ a− 1, then

|Ci| =
2ps∑
j=0

Aj

= 1 +

2i−2(b−1)ps∑
j=1

(
pm(a−b) − 1

)
pm(a−b)(j−1)+

+

2bps−2i−1∑
k=0

p2m(a−b)ps(pm − 1)pmk

+

2ps∑
j=2i−2(b−1)ps+1

(
pm(a−b) − 1

)
pm(a−b)(j−1)

= 1 +
(
pm(a−b) − 1

) 2ps−1∑
j=0

pm(a−b)j + p2m(a−b)ps(pm − 1)

2bps−2i−1∑
k=0

pmk

= 1 +
(
pm(a−b) − 1

) pm(a−b)2ps − 1

pm(a−b) − 1
+ p2m(a−b)ps(pm − 1)

pm(2bps−2i) − 1

pm − 1

= 1 +
(
pm(a−b)2ps − 1

)
+ p2m(a−b)ps

(
pm(2bps−2i) − 1

)
= p2m(aps−i).

In fact, as discussed in [33], the Singleton Bound of RT distance is quite
straightforward from the definition. Let C be a linear code of length n over Ra
with Rosenbloom-Tsfasman distance dRT(C). Mark the first dRT(C)−1 entries
of each codeword of C, then two different codewords of C can not coincide in all
other n− dRT(C) + 1 entries, otherwise C would have had a nonzero codeword
of RT weight less than or equal to dRT(C) − 1. Thus, C can contain at most
pam(n−dRT(C)+1) codewords.
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Theorem 4.7 (Singleton Bound for RT distance). Let C be a linear code of
length n over Ra with Rosenbloom-Tsfasman distance dRT(C). Then |C| ≤
pam(n−dRT(C)+1).

When a code C attains this Singleton Bound, i.e., |C| = pam(n−dRT+1), it
is said to be a Maximum Distance Separable (MDS) code (with respect to the
RT distance). We now point out the unique MDS Type 1 constacyclic codes of
length 2ps over Ra with respect to the RT distance.

Theorem 4.8. The only maximum distance separable Type 1 Λ-constacyclic
code of length 2ps over Ra, with respect to the RT distance, is the whole ambient
ring Sa(s,Λ).

Proof. Let C be a nonzero Type 1 Λ-constacyclic code of length 2ps over
Ra. By Theorem 3.5, C = 〈(x2 − α0)i〉 ⊆ Sa(s,Λ) for some integer i ∈
{0, 1, . . . , aps − 1}, and |C| = p2m(aps−i).

If 0 ≤ i ≤ (a−1)ps, then, by Theorem 4.2, dRT(C) = 1, and 2ps−dRT(C) +
1 = 2ps. Thus,

C is MDS ↔ |C| = pam(2ps−dRT(C)+1)

↔ p2m(aps−i) = p2amps

↔ aps − i = aps

↔ i = 0.

If (a − 1)ps + 1 ≤ i ≤ aps − 1, then, using Theorem 4.2 again, we get
dRT(C) = 2i− 2(a− 1)ps + 1, and 2ps − dRT(C) + 1 = 2aps − 2i. Hence,

C is MDS ↔ |C| = pam(2ps−dRT(C)+1)

↔ p2m(aps−i) = pam(2aps−2i)

↔ aps − i = a2ps − ai
↔ (a− 1)i = (a2 − a)ps

↔ i = aps,

which is impossible since (a− 1)ps + 1 ≤ i ≤ aps − 1.
Therefore, the code C = 〈(x2−α0)i〉 ⊆ Sa(s,Λ) is MDS if and only if i = 0,

i.e., C = Sa(s,Λ). �
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