DOI QR코드

DOI QR Code

일본의 토사재해 대응체계에 대한 연구

A study on the Sediment Disaster Response System in Japan

  • 투고 : 2018.05.23
  • 심사 : 2018.07.20
  • 발행 : 2018.07.28

초록

최근 우리나라는 토사재해로 인하여 해마다 많은 인명과 재산피해가 발생하고 있다. 비교법적으로 검토해 보면, 일본 히로시마에서는 1999년에 폭우로 인한 토사재해로 엄청난 피해가 발생하였는데, 이후 제정된 토사재해방지법에 근거하여 도도부현에 토사 재해 방지를 위한 비 구조 대책이 도입되었다. 여기에는 토사재해 경보, 대피 표준 강우량 제정, 토사재해 경계 구역 지정 및 토사재해 특별 경계 구역 지정 등이 포함되어 있다. 또한 구체적인 실제 적용례로서, 일본 가고시마현의 토사재해경계정보시스템과 전문 인력 활용방안인 일본 국토교통성의 TEC-FORCE사례를 중점적으로 살펴보았다. 향후, 일본과 같은 토사재해경계시스템과 전문 인력을 활용한 피해예방 및 피해저감 대책이 절대적으로 필요하다고 할 것이다.

Sediment disaster happen frequently in our country every year, and a lot of lives and the properties have been lost because of them. Non-structural measures for prevention of sediment disaster have been introduced by prefectures based on the Sediment-related Disaster Prevention Law established after the devastating rainstorm damage in Hiroshima in 1999. They include formulation of sediment disaster warning and evacuation standard rainfall and designation of sediment disaster warning zones and sediment disaster special warning zones. As a practical example, this research focused on the case of "TEC-FORCE" of "MLIT of Japan" as a method of utilizing professional workforce and the sediment disaster warning information delivery system in Kagoshima. In the future, it will be called for prevention and reduction of damages by utilizing professional workforce and sediment disaster response system such as Japan.

키워드

참고문헌

  1. Disaster Report 2016. (2016). Sejong : MOIS.
  2. B. S. Kim. (2013). Climate Change and Sediment Disaster. Magazine of KOSHAM, 13(4), 44-51.
  3. S. Y. Shin. (2016). A Study on the Present Status and Future Directions of Legal System Related to Sediment Disasters in Urban Area. Magazine of KOSHAM, 16(4), 60-67.
  4. KALGS. (2008). A Comparative Study on Disaster Safety Management System of the Major Advanced Countries. Seoul : MOIS.
  5. O. B. Sim. (2013. Nov. 18), A Study on the Land Use System for Disaster Prevention through the Analysis of Disaster Vulnerabilities. KRIHS Policy Brief, 442, 1-8.
  6. T. Tamotsu. (2005), Soil Erosion and Countermeasures. Seoul : CIR.
  7. Development of the Integrated Management Technology for the Prediction, Evaluation and Management of Soil Disasters Considering Urban Characteristics. (2017). Sejong : MOLIT.
  8. The Revision and Countermeasures of the Sediment Disaster Prevention Act. (2015). Tokyo : MLIT.
  9. K. Takahashi, K. Kouchi, H. Kondo & S. Nakamura. (2008). A Study on the Sediment Disaster Warning System and Response in Kagoshima Prefecture during Typhoon No. 14 in 2005. Journal of JSNDS, 26(4), 343-353.
  10. H. Ikeya. (2014). Saving Lives from Sediment Disasters. Tokyo : Gogatsshobo.
  11. MLIT. (2018). Overview of the Sediment Disaster Prevention Act. MLIT. http://www.mlit.go.jp/river/sabo/sinpoupdf/gaiyou.pdf
  12. MLIT. (2018). Overview of the TEC-FORCE, MLIT. http://www.mlit.go.jp/river/bousai/pch-tec/index.html
  13. MLIT. (2014). Disaster and Countermeasures in 2014. Tokyo : MLIT.
  14. MLIT. (2014). Sent to Hiroshima Sediment Disaster in August 2014, MLIT. http://www.mlit.go.jp/river/bousai/pch-tec/pdf/TECFORCE2-9.pdf
  15. KISTEC. (2014). The Development Of Advanced Pre-Emptive Maneuver and Safety Technology on Soli Disast. Sejong : MOLIT.
  16. S. G. Lee. (2014, Jul). The Present Situation and Improvement of landslides - Korean Parliamentary Debate. The Role of Technology for National Disaster Preparation and National Safety. (pp. 31-92). Seoul : Association for Research and Development.
  17. K. B. Kim, G. M. Geum & C. B. Jang. (2017). Research on the Convergence of CCTV Video Information with Disaster Recognition and Real-time Crisis Response System. Journal of the Korea Convergence Society, 8(3), 15-22. DOI : 10.15207/JKCS.2017.8.3.015