스마트 호기 센서 응용 금속 산화물 반도체 나노입자 연구 동향

  • 유란 (연세대학교 신소재공학과) ;
  • 이우영 (연세대학교 신소재공학과)
  • 발행 : 2018.06.30

초록

This paper reports a comprehensive review of the state-of-the-art in research on the enhancement of sensing properties for the detection of gases in exhaled breath. Daily health monitoring and early diagnosis of specific diseases via the analysis of exhaled breath is possible. Because biomarkers in exhaled breath are emitted in a very small amount, it is necessary to develop highly sensitive gas sensors. In recent years, a number of researches have been carried out using various strategies for the enhancement of sensing properties such as doping, catalyst, hollow sphere, heterojunction, size effect. We introduced each strategy and summarized recent progress on sensing properties for detection of biomarkers in exhaled breath.

키워드

참고문헌

  1. T. L. Mathew, P. Pownraj, S. Abdulla, B. Pullithadathil, "Technologies for Clinical Diagnosis Using Expired Human Breath Analysis" Diagnostics 5 274-60 (2015)
  2. L. Pauling, A. B. Robinson, R. Teranish, P. Cary, "Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography" Proc. Nat. Acad. Sci. USA 68 [10] 2374-2376 (1971) https://doi.org/10.1073/pnas.68.10.2374
  3. M. Phillips, "Method for the Collection and Assay of Volatile Organic Compounds in Breath", Anal. Biochem. 247 272-278 (1997) https://doi.org/10.1006/abio.1997.2069
  4. K. Schwarz, A. Pizzini, B. Arendacka, K. Zerlauth, W. Filipiak, A. Schmid, A. Dzien, S. Neuner, M. Lechleitner, S. Scholl-burgi, "Breath acetone-aspects of normal physiology related to age and gender as determined in a PTR-MS study" J. Breath Res. 3 027003 (2009) https://doi.org/10.1088/1752-7155/3/2/027003
  5. C.Turner, C. Walton, S. Hoashi, M. Evans, "Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps" J. Breath Res. 3 046004 (2009) https://doi.org/10.1088/1752-7155/3/4/046004
  6. T. Seiyama, A. Kato, K. Fujishi and M. Nagatani, Anal. Chem. 34 1502-1503 (1962) https://doi.org/10.1021/ac60191a001
  7. Franke, M.E.; Koplin, T.J.; Simon, U. "Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?" Small 2 36-50 (2005)
  8. Schierbaum, K.D.; Weimar, U.; Gopel, W.; Kowalkowski, R. Conductance, Work Function and Catalytic Activity of $SnO_2$-Based Gas Sensors. Sens. Act. B: Chem. 3 205-214 (1991) https://doi.org/10.1016/0925-4005(91)80007-7
  9. 이종흔, "나노구조 반도체형 가스센서", Ceramist 8 [4] (2005)
  10. M. Righettonic, A. Tricoli, S. E. Pratsinis, "Si:$WO_3$ sensors for high selective detection of acetone for easy diagnosis of diabetes by breath analysis", Anal. Chem. 82 3581-3587 (2010) https://doi.org/10.1021/ac902695n
  11. A. T. Guntner, N. J. Pineau, D. Chie, F. Krumeich, S. E. Pratsinis, "Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics", J. Mat. Chem. B 4 5358-5366 (2016) https://doi.org/10.1039/C6TB01335J
  12. A. T. Guntner, M. Righettoni, S. E. Pratsinis, "Selective sensing of $NH_3$ by Si-doped a-$MoO_3$ for breath analysis", Sens. Act. B. Chem. 223 266-273 (2016) https://doi.org/10.1016/j.snb.2015.09.094
  13. R. Yoo, Y. Park, H. J. Rim, S. Cho, H.-S. Lee, W. Lee "Enhanced sensing performance of doped ZnO nanoparticles for detection of acetone" Sens. Act. B: Chem. Submitted
  14. S. Bai. S. Che, Y. Zhao, T. Guo, R. Luo, D. Li, A. Chen "Gas sensing properties of Cd-doped ZnO nanofibers synthesized by the electrospinning method" J. Mater. Chem. A 2 16697-16706 (2014) https://doi.org/10.1039/C4TA03665D
  15. R. Sankar ganesh, M. Navaneethan, G. K. Mani, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, S. Kawasaki, Y. Hayakawa "Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods" J. Alloys. Compd. 698 555-564 (2017) https://doi.org/10.1016/j.jallcom.2016.12.187
  16. M. Karmaoui, S. G. Leonardi, M. Latino, D. M. Tobaldi, N. Donato, R. C. Pullar, M. P. Seabra, J. A. Labrincha, G. Neri, "Pt-decorated $In_2O_3$ nanoparticles and their ability as a highly sensitive (<10ppb) acetone sensor for biomedical applications" Sens. Act. B: Chem. 230 697-705 (2016) https://doi.org/10.1016/j.snb.2016.02.100
  17. L. Wang, Y. Wang, K. Yu, S. Wang, Y. Zhang, C. Wei, "A novel low temperature gas sensor based on Pt-decorated hierarchical 3D $SnO_2$ nanocomposites" Sens. Act. B: Chem. 232 91-101 (2016) https://doi.org/10.1016/j.snb.2016.02.135
  18. J.-S. Jang, S.-J. Kim, S.-J. Choi, N.-H. Kim, M. Hakim, A. Rothschild, I.-D. Kim, "Thin-walled $SnO_2$ nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules", Nanoscale 7 16417-16426 (2015) https://doi.org/10.1039/C5NR04487A
  19. A. Koo, R. Yoo, S. P. Woo, H.-S. Lee, W. Lee "Enhanced acetone sensing properties of Pt-decorated Al-doped ZnO nanoparticles" Sens. Act. B: Chem. Submitted
  20. D.-H. Kim, J.-S. Jang, W.-T. Koo, S.-J. Choi, S.-J. Kim, I.-D. Kim, "Hierarchically interconnected porosity control of catalyst-loaded $WO_3$ nanofiber scaffold: Superior acetone sensing layers for exhaled breath analysis", Sens. Act. B: Chem. 259 616-625 (2018) https://doi.org/10.1016/j.snb.2017.12.051
  21. B.-Y. Kim, J. S. Cho, J.-W. Yoon, C. W. Na, C.-S. Lee, J. H. Ahn, Y. C. Kang, J.-H. Lee, "Extremely sensitive ethanol ethanol sensor using Pt-doped $SnO_2$ hollow nanosphere prepared by Kirkendall diffusion", Sens. Act. B: Chem. 234 353-360 (2016) https://doi.org/10.1016/j.snb.2016.05.002
  22. Y.-M. Jo, C.-S. Lee, R. Wang, J.-S. Park, J.-H. Lee, "Highly sensitive and selective ethanol sensors using magnesium doped indium oxide hollow spheres", J. Kor. Ceram. Soc. 54 [4], 303-307 (2017) https://doi.org/10.4191/kcers.2017.54.4.01
  23. W.-T. Koo, J.-S. Jang, S.-J. Choi, H.-J. Cho, I.-D. Kim, "Metal-organic framework template catalysts: dual sensitization of PdO-ZnO composite on hollow $SnO_2$ nanotubes for selective acetone sensors" ACS Appl. Mat. Interfaces 9 18069-18077 (2017) https://doi.org/10.1021/acsami.7b04657
  24. D. Ju, H. Xu, Q. Xu, H. Gong, Z. Qiu, J. Guo, J. Zhang, B. Cao, "High trimethylamine-sensing properties of NiO/$SnO_2$ hollow sphere P-N heterojunction sensors", Sens. Act. B: Chem, 215 39-44 (2015) https://doi.org/10.1016/j.snb.2015.03.015
  25. B. Han, X. Liu, X. Xing, N. Chen, X. Xiao, S. Liu, Y. Wang, "A high response butanol gas sensor based on ZnO hollow spheres", Sens. Act. B: Chem. 237 423-430 (2016) https://doi.org/10.1016/j.snb.2016.06.117
  26. Q. Wang, X. Li, F. Liu, C. Liu, T. Su, J. Lin, P. Sun, Y. Sun, F. Liu, G. Lu, "The enhanced CO gas sensing performance of Pd/$SnO_2$ hollow sphere sensors under hydrothermal conditions", RSC Adv. 6 80455-80461 (2016) https://doi.org/10.1039/C6RA15765C
  27. S. H. Yan, S. Y. Ma, W. Q. Li, X. L. Xu, L. Cheng, H. S. Song, X. Y. Liang, "Synthesis of SnO2-ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance", Sens. Act. B: Chem. 221 88-95 (2015)
  28. C. Feng, X. Li, J. Ma, Y. Sun, C. Wang, P. Sun, J. Zheng, G. Lu, "Facile synthesis and gas sensing properties of $In_2O_3$-$WO_3$ heterojunction nanofibers", Sens. Act. B: Chem. 209 622-629 (2015) https://doi.org/10.1016/j.snb.2014.12.019
  29. Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, "Branchlike hierarchical heterostructure (a-$Fe_2O_3/TiO_2$): A novel sensing material for trimethylamine gas sensor", ACS Appl. Mat. Interfaces 5 12310-12316 (2013) https://doi.org/10.1021/am402532v
  30. B. Behera, S. Chandra, "An innovative gas sensor incorporating ZnO-CuO nanoflakes in planar MEMS technology", Sens. Act. B: Chem. 229 414-424 (2016) https://doi.org/10.1016/j.snb.2016.01.079
  31. H.-J. Kim, H.-M. Jeong, T.-H. Kim, J.-H. Chung, Y. C. Kang, J.-H. Lee, "Enhanced ethanol sensing characteristics of $In_2O_3$-decorated NiO hollow nanostructures via modulation of hole accumulation layers", ACS Appl. Mat. Interfaces 6 18197-18204 (2014) https://doi.org/10.1021/am5051923
  32. Z. Song, S. Xu, J. Liu, Z. Hu, N. Gao, J. Zhang, F. Yi, G. Zhang, S. Jiang, H. Liu "Enhanced catalytic activity of $SnO_2$ quantum dot films employing atomic ligand-exchange strategy for fast response $H_2S$ gas sensors" Sens. Act. B: Chem. 271 147-156 (2018) https://doi.org/10.1016/j.snb.2018.05.122
  33. A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lomments, Z. Hens, "Synthesis and gas sensing properties of ZnO quantum dots", Sens. Act. B: Chem., 146 111-115 (2010) https://doi.org/10.1016/j.snb.2010.02.059
  34. Y. Zhao, H. Yang, B. Yang, Z. Liu, P. Yang "Effects of uniaxial stress on the electrical structure and optical properties of Al-doped n-type ZnO" Solar Energy 140 21-26 (2016) https://doi.org/10.1016/j.solener.2016.10.035
  35. G. Korotcenkov, I. Boris, V. Brinzari, S. H. Han, B. K. Cho, "The role of doping effect on the response of SnO2-based thin film gas sensors: Analysis based on the results obrained for Co-doped $SnO_2$ films deposited by spray pyrolysis" Sens. Act. B: Chem 182 112-124 (2013) https://doi.org/10.1016/j.snb.2013.02.103
  36. Q. N. Abdullah, F. K. Yam, Z. Hassan, M. Bououdina "Pt-decorated GaN nanowires with significant improvement in $H_2$ gas-sensing performance at room temperature" J. Coll. Interf. Sci. 460 135-145 (2015) https://doi.org/10.1016/j.jcis.2015.07.048
  37. N. Yamazoe, G. Sakai, K. Shimanoe "Oxide semiconductor gas sensors" Catal. Surv. Asia 7 [1] 63-75 (2003) https://doi.org/10.1023/A:1023436725457
  38. C. M. Hung, N. D. Hoa, N. V. Duy, N. V. Toan, D. T. T. Le, N. V. Hieu "Synthesis and gas-sensing characteristics of ${\alpha}-Fe_2O_3$ hollow balls" J. Sci: Adv. Mater. Dev. 1 45-50 (2016)
  39. 김선중, 이종흔, "중공구조를 이용한 실시간 감응 가스센서" Ceramist 12 [4] (2009)
  40. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, "Grain size effects on gas sensitivity of porous $SnO_2$-based elements" Sens. Act. B 3 147-155 (1991) https://doi.org/10.1016/0925-4005(91)80207-Z
  41. Y. Shimizu, M. Egashira "Basic aspects and challenges of semiconductor gas sensors" in Chemical sensor technology, Kodansha-Elsevier 4 19-42 (1992)
  42. Breezing Co., http://breezing.com