DOI QR코드

DOI QR Code

On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions

  • Khodjet-Kesba, M. (Laboratoire des Sciences Aeronautiques, Institut d'Aeronautique et des Etudes Spatiales, Universite de Blida1) ;
  • Benkhedda, A. (Laboratoire des Sciences Aeronautiques, Institut d'Aeronautique et des Etudes Spatiales, Universite de Blida1) ;
  • Adda Bedia, E.A. (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes) ;
  • Boukert, B. (Laboratoire des Sciences Aeronautiques, Institut d'Aeronautique et des Etudes Spatiales, Universite de Blida1)
  • Received : 2017.11.09
  • Accepted : 2018.04.22
  • Published : 2018.07.25

Abstract

A simple predicted model using a modified Shear-lag method was used to represent the moisture absorption effect on the stiffness degradation for $[0/90]_{2s}$ composite laminates with transverse cracks and under flexural loading. Good agreement is obtained by comparing the prediction model and experimental data published by Smith and Ogin (2000). The material properties of the composite are affected by the variation of temperature and moisture absorption. The transient and non-uniform moisture concentration distribution give rise to the transient elastic moduli of cracked composite laminates. The hygrothermal effect is taken into account to assess the changes in the normalised axial and flexural modulus due to transverse crack. The obtained results represent well the dependence of the stiffness properties degradation on the cracks density, moisture absorption and operational temperature. The composite laminate with transverse crack loaded in axial tension is more affected by the hygrothermal condition than the one under flexural loading. Through this theoretical study, we hope to contribute to the understanding of the moisture absorption on the composite materials with matrix cracking.

Keywords

References

  1. Adda Bedia, E.A., Bouazza, M., Tounsi, A., Benzair, A. and Maachou, M. (2008), "Prediction of stiffness degradation in hygrothermal aged $[{\theta}_m/90_n]_s$ composite laminates with transverse cracking", J. Mater. Proc., 199(1-3), 199-205. https://doi.org/10.1016/j.jmatprotec.2007.08.002
  2. Amara, K.H., Bouazza, M., Antar, K. and Megueni, A. (2014), "Evaluation of the stiffness of composite materials with hygrothermal conditions", Leona. J. Sci., 13(25), 57-64.
  3. Amara, K.H., Tounsi, A., Megueni, A. and Adda-Bedia, E.A. (2006), "Effect of transverse cracks on the mechanical properties of angle-ply composite laminates", Theor. Appl. Frac. Mech., 45(1), 72-78. https://doi.org/10.1016/j.tafmec.2005.11.003
  4. Barbero, E.J. and Cosso, F.A. (2014), "Determination of material parameters for discrete damage mechanics analysis of carbonepoxy laminates", Compos. Part B, 56, 638-646. https://doi.org/10.1016/j.compositesb.2013.08.084
  5. Benkhedda, A., Tounsi, A. and Adda-Bedia, E.A. (2008), "Effect of temperature and humidity on transient hygrothermal stress during moisture desorption in laminated composite plates", Compos. Struct., 82(4), 629-635. https://doi.org/10.1016/j.compstruct.2007.04.013
  6. Benzair, A., Maachou, M., Amara, K.H. and Tounsi, A. (2006), "Effect of transverse cracks on the elastic properties of high temperature angle-ply laminated composites", Compos. Mater. Sci., 37(4), 470-475. https://doi.org/10.1016/j.commatsci.2005.11.006
  7. Berthelot, J.M., Leblonb, P., El Mahi, A. and Le Core, J.F. (1996), "Transverse cracking of cross-ply laminated: Part analysis", Compos., 27(10), 989-1001. https://doi.org/10.1016/1359-835X(96)80002-A
  8. Bouazza, M., Tounsi, A., Benzair, A. and Adda-Bedia, E.A. (2007), "Effect of transverse cracking on stiffness reduction of hygrothermal aged cross-ply laminates", Mater. Des., 28(4), 1116-1123. https://doi.org/10.1016/j.matdes.2006.02.003
  9. Chamis, C.C. (1983), "Simplified composite micromechanics equations of hygral, thermal, and mechanical properties", SAMPE Quart, 15, 14-23.
  10. Collings, T.A. and Stone, D.E.W. (1985), "Hygrothermal effects in CFC laminates: Damaging effects of temperature, moisture and thermal spiking", Compos. Struct., 3(3-4), 341-378. https://doi.org/10.1016/0263-8223(85)90061-3
  11. Crank, J. (1975), The Mathematical Theory of Diffusion, 2nd Edition, Oxford University Press, Oxford, U.K.
  12. Gillat, O. and Broutman, L.J. (1987), "Effect of an external stress on moisture diffusion and degradation in a graphite-reinforced epoxy laminate", Ad. Compos. Mater. Environ. Eff., 658, 61-83.
  13. Hajikazemi, M. and Sadr, M.H. (2014), "Stiffness reduction of cracked general symmetric laminates using a variational approach", Int. J. Sol. Struct., 51(7-8), 1483-1493. https://doi.org/10.1016/j.ijsolstr.2013.12.040
  14. Halpin, J.C. and Tsai, S.W. (1968), "Effects of environmental factors on composite materials", AFML-TR, 67-423.
  15. Huang, Z.Q., Zhou, J.C. and Liew, K.M. (2014), "Variational analysis of angle-ply laminates with matrix cracks", Int. J. Sol. Struct., 51(21-22), 3669-3678. https://doi.org/10.1016/j.ijsolstr.2014.06.028
  16. Jackson, S.P. and Weitsman, Y. (1985), "Moisture effects and moisture induced damage in composites", F. Int. Conf. on Comp. Mat. ICCM-V, 1435-1452.
  17. Kam, T.Y. and Jan, T.B. (1995), "First ply failure analysis of laminated composite plates based on the layer wise linear displacement theory", Compos. Struct., 32(1-4), 583-591. https://doi.org/10.1016/0263-8223(95)00069-0
  18. Katerelos, D.T.G., Krasnikovs, A. and Varna, J. (2015), "Variational models for shear modulus of symmetric and balanced laminates with cracks in $90^{\circ}$-layer", Int. J. Sol. Struct., 71, 169-179. https://doi.org/10.1016/j.ijsolstr.2015.06.017
  19. Khodjet-Kesba, M., Adda-Bedia, E.A., Benkhedda, A. and Boukert, B. (2015), "Hygrothermal effect in $[{\theta}_m/90_n]_s$cracked composite laminates-desorption case", Proc. Eng., 114, 110-117. https://doi.org/10.1016/j.proeng.2015.08.048
  20. Khodjet-Kesba, M., Adda-Bedia, E.A., Benkhedda, A. and Boukert, B. (2016), "Prediction of Poisson's ratio degradation in hygrothermal aged and cracked $[{\theta}_m/90_n]_s$composite laminates", Steel Compos. Struct., 21(1), 57-72. https://doi.org/10.12989/scs.2016.21.1.057
  21. Li, S. and Hafeez, F. (2009), "Variation-based cracked laminate analysis revisited and fundamentally extended", Int. J. Sol. Struct., 46(20), 3505-3515. https://doi.org/10.1016/j.ijsolstr.2009.03.031
  22. Loos, A.C. and Springer, G.S. (1981), "Environmental effects on composite materials", Environ. Eff. Compos. Mater., 34-50.
  23. Lundgren, J.E. and Gudmundson, R. (1998), "A model for moisture absorption in cross-ply composite laminates with matrix cracks", J. Compos. Mater., 32(24), 2226-2253. https://doi.org/10.1177/002199839803202403
  24. Maurice, F.A. (2001), Engineering Composite Materials, EMC471, State University, Pennsylvania, U.S.A.
  25. Reddy, J.N. and Pandey, A.K. (1987), "A first ply failure analysis of composite laminates", Compos. Struct., 25(3), 371-393. https://doi.org/10.1016/0045-7949(87)90130-1
  26. Reddy, J.N. (1997), "An exact solution for the bending of thin and thick cross ply laminated beams", Compos. Struct., 37(2), 195-203. https://doi.org/10.1016/S0263-8223(97)80012-8
  27. Reddy, Y.N.S. and Reddy, J.N. (1992), "Linear and non-linear failure analysis of composite laminates with transverse shear", Compos. Sci. Technol., 44(3), 227-255. https://doi.org/10.1016/0266-3538(92)90015-U
  28. Rezoug, T., Benkhedda, A., Khodjet-Kesba, M. and Adda-Bedia, E.A. (2011), "Analysis of the composite patches cracked and aged in hygrothermal conditions", Mech. Indus., 12(5), 395-398.
  29. Shen, C.H. and Springer, G.S., (1981), Moisture Absorption and Desorption of Composite Materials, Environ. Eff. Compos. Mater., Ed. G.S. Springer, Technomic Publishing Co., Lancaster, Pennsylvania, U.S.A.
  30. Smith, P.A. and Ogin, S.L. (1999), "On transverse matrix cracking in cross-ply laminates loaded in simple bending", Compos. A, 30(8), 1003-1008. https://doi.org/10.1016/S1359-835X(99)00006-8
  31. Smith, P.A. and Ogin, S.L. (2000), "Characterization and modelling of matrix cracking in a (0/90)2s GFRP laminate loaded in flexure", Proc. R. Soc. Lond. A, 456, 2755-2770. https://doi.org/10.1098/rspa.2000.0638
  32. Staab, G. (1999), Laminar Composite, Butterworth-Heinemann, London, U.K.
  33. Suri, C. and Perreux, D. (1995), "The effect of mechanical damage in a glass fibre/epoxy composite on the absorption rate", Compos. Eng., 5(4), 415-424. https://doi.org/10.1016/0961-9526(94)00014-Z
  34. Talerja, R. (1986), "Stiffness properties of composite laminates with matrix cracking and interior delamination", Eng. Fract. Mech., 25(5-6), 751-762. https://doi.org/10.1016/0013-7944(86)90038-X
  35. Tounsi, A., Adda-Bedia, E.L. and Benachour, A. (2005), "A new computational method for prediction of transient hygroscopic stresses during moisture desorption in laminated composite plates with different degrees of anisotropy", Int. J. Therm. Compos. Mater., 18(1), 37-58. https://doi.org/10.1177/0892705705041156
  36. Turvey, G.J. (1980), "A study of the onset of flexural failure in cross-ply laminated strips", Fibre Sci. Technol., 13(5), 325-336. https://doi.org/10.1016/0015-0568(80)90008-1
  37. Vingradov, V. and Hashin, Z. (2010), "Variational analysis of cracked angle-ply laminates", Compos. Sci. Technol., 70(4), 638-646. https://doi.org/10.1016/j.compscitech.2009.12.018
  38. Weitsman, Y. (1987), "Coupled damage and moisture-transport in fiber reinforced, polymeric composites", Int. J. Sol. Struct., 23(7), 1003-1025. https://doi.org/10.1016/0020-7683(87)90093-X
  39. Wong, T.C., Broutman, L.J. (1985), "Moisture diffusion in epoxy resins part 1. Non-Fickian sorption processes", Polym. Eng. Sci., 25(9), 521-528. https://doi.org/10.1002/pen.760250903

Cited by

  1. Effect of hybrid thermal cycling shocks on the mechanical properties of structural composites vol.79, pp.3, 2018, https://doi.org/10.12989/sem.2021.79.3.301