• Title/Summary/Keyword: Chamis model

Search Result 3, Processing Time 0.016 seconds

Tensile Behavior of Pin-Loaded Carbon/Epoxy Composite Laminates (핀하중을 받는 탄소섬유/에폭시 복합적층판의 인장거동)

  • 박동창;황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2518-2534
    • /
    • 1993
  • Fracture behavior of carbon/epoxy laminates under pin loading is studied experimentally and analytically. Effects of ratios of specimen width to hole diameter and edge distance to hole diameter on bearing strength are investigated. Characteristic length of the laminates obtained using HK model has good agreement with the experimental data. The larger hole size induced, the lower bearing strength is measured under pin loading . The bearing strength and failure mode could be predicted using HK model and Zhangs analytical solution of stress distribution around a pin loaded hole. Chamis' prediction method of bearing strength is also considered to predict failure mode and bearing strength. A modification of Chamis' method is made using the factor of rupturc. The predicted bearing strength by the modified method is reasonably close to the experimental data.

Predictions of elastic properties of stitched multi-warped knitted composites (다축경편 복합재료 물성의 스티칭 효과)

  • Kim, Hyung-Woo;Chun, Heoung-Jae;Byun, Joon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.125-129
    • /
    • 2005
  • A micromechanical model for predicting the elastic constants of stitched multi-axial warp knitted (MWK) composite is developed. The averaging method is used to obtain effective properties of stitched MWK fabric composites. In the analysis, a representative volume of the MWK fabric composite is identified. The geometric limitations, effects of stitching yarns and design parameters of MWK fabric composites are considered in the model. Then, the elastic properties of stitched MWK fabric composites are predicted. Finally, the predicted elastic constants are validated by comparison with experimental data. The predicted results are in fair agreement with the experimental results.

  • PDF

On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions

  • Khodjet-Kesba, M.;Benkhedda, A.;Adda Bedia, E.A.;Boukert, B.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.165-173
    • /
    • 2018
  • A simple predicted model using a modified Shear-lag method was used to represent the moisture absorption effect on the stiffness degradation for $[0/90]_{2s}$ composite laminates with transverse cracks and under flexural loading. Good agreement is obtained by comparing the prediction model and experimental data published by Smith and Ogin (2000). The material properties of the composite are affected by the variation of temperature and moisture absorption. The transient and non-uniform moisture concentration distribution give rise to the transient elastic moduli of cracked composite laminates. The hygrothermal effect is taken into account to assess the changes in the normalised axial and flexural modulus due to transverse crack. The obtained results represent well the dependence of the stiffness properties degradation on the cracks density, moisture absorption and operational temperature. The composite laminate with transverse crack loaded in axial tension is more affected by the hygrothermal condition than the one under flexural loading. Through this theoretical study, we hope to contribute to the understanding of the moisture absorption on the composite materials with matrix cracking.