DOI QR코드

DOI QR Code

Curing Behaviours and Adhesion Performance of Thermal Cured Acrylic PSAs Synthesized by UV-polymerization

UV 중합을 활용하여 제조된 열경화형 아크릴 점착제의 경화특성 및 접착특성 분석

  • Nguyen, Hung-Cuong (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Sciences, Seoul National University) ;
  • Lee, Seung-Woo (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Sciences, Seoul National University) ;
  • Back, Jong-Ho (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Sciences, Seoul National University) ;
  • Park, Ji-Won (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Sciences, Seoul National University) ;
  • Kim, Hyun-Joong (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Sciences, Seoul National University)
  • ;
  • 이승우 (서울대학교 바이오복합재료 및 접착과학 연구실) ;
  • 백종호 (서울대학교 바이오복합재료 및 접착과학 연구실) ;
  • 박지원 (서울대학교 바이오복합재료 및 접착과학 연구실) ;
  • 김현중 (서울대학교 바이오복합재료 및 접착과학 연구실)
  • Received : 2018.06.03
  • Accepted : 2018.06.21
  • Published : 2018.06.29

Abstract

Many methods for cross-linking acrylic PSAs have been discussed previously. For high cross-linking density, epoxy functionalized monomer and methyl aziridines as cross-linking agents were used in this study. Additionally, photopolymerization using different UV doses was investigated to synthesize a binder because of its rapid productivity. FT-IR analysis, curing behaviours and adhesion performance were examined for the relationship between UV doses and temperature as curing conditions. According to the results, the gel fraction was over 50% even at $120^{\circ}C$ after UV curing at a dose of $800mJ/cm^2$. On the other hand, while gel fractions of all samples reached approximately 80% only at $180^{\circ}C$ in thermal curing for 1 hour, gel fractions of the samples after thermal curing for 3 hours increased rapidly above $120^{\circ}C$ regardless of UV doses and reached approximately 100% at $180^{\circ}C$. This means that the second cross-linking reaction, esterification, is mainly dependent on the curing temperature.

아크릴레이트 기반의 점착제를 가교 시키는 기술은 다양하게 소개되어 왔다. 본 연구에서는 에폭시 변성 단량체와 메틸아지리딘 가교제를 활용하여 높은 가교 밀도를 가지는 아크릴 구조체를 만들었다. 베이스구조체를 제조하기 위해서 빠른 제조 공정이 가능하고 무용제 공정이 가능한 UV 중합 기술을 활용했다. FT-IR, 경화거동 및 접착특성 평가를 통해 UV경화도 및 2차경화 온도에 따른 특성 변화를 확인하고자 하였다. 겔분율은 선경화 $800mJ/cm^2$, 120도 후 경화온도 조건에서 50%이상 확보할 수 있었으며, 180도 경화조건에서 80%이상 확보 할 수 있었다. 경화 시간이 길어짐에 따라 경화도가 100%에 도달하였으며 이를 통해 열경화를 통한 2차 경화가 효과적임을 확인 할 수 있었다.

Keywords

References

  1. J. Johnston, Indiana: Prss Sensitive Tape Council, (2000).
  2. D. Satas, Handbook of pressure sensitive adhesive technology, New York: Springer, (1989).
  3. D. Satas, Advances in pressure sensitive adhesive technology-1, Rhode Island: Stas & Associates, (1992).
  4. Z. Chech, A. owalczyk, J. Kabtac, J. Swiderska, Polym., 69 (2012).
  5. S. H. Lee, R. You, Y. I. Yoon, W. H. Park, Int. J. Adhes. Adhes., 75, (2017).
  6. I. Skeist, Handbook of adhesives, New York: Huntington Publishing Co. (1977).
  7. G. Auchter, O. Aydin, A. Zettl, D. Satas, Handbook of pressure sensitive adhesives technology, Warwick: Satas & Associates, (1999).
  8. Z. Czech, R. Petech, J. Therm. Anal. Calorim., 96, (2003).
  9. Z. Czech, Polym. Int., (2003).
  10. J. A. Mikroyannidis, J. Appl. Poly. Sci., 41, (1990).
  11. Z. Czech, Polym. Adv. Technol., 15, (2004).
  12. H. S. Park, Y. J. Park, H. S. Do, H. J. Kim, S. Y. Song, K. Y. Choi, J. Adhes. Sci. Technol, 21, (2007).
  13. D. H. Lim, H. S, Do, H. J, Kim, J. Appl. Polym. Sci., 102, (2006).
  14. S. W. Lee, J. W. Park, Y. E. Kwon, K. Kim, H. J. Kim, E. A. Kim, H. S. Woo, J. Seiderska, Int. J. Adhes. Adhes, 38, (2012).
  15. A. J. Crosby, K. R. Shull, J. Polym. Sci., Part B: Polym. Phys., 37, (1999).
  16. J. Ashara, N. Hori, A. Takemura, H. Ono, J. Appl. Polym. Sci., 87, (2003).
  17. P. S. kim, S. W. Lee, J. W. Park, C. H. Park, H. J. Kim, J. Adhes. Sci. Technol., 28, (2014).
  18. A. Aymonier, E. Papon, J. J. Villenave, Ph. Torjeman, R. Pirri, P. Gerard, Chem. Mater., 13, (2001).
  19. J. C. Grunlan, D. L. Holguin, H. K. Chuang, I. Perez, A. Chvira, R. Quilatan, J. Akhave, A. R. Mehrabi, Macromol. Rapid Communm, 25, (2004).
  20. P. S. Kim, S. W. Lee, J. W. Park, H. J. Kim, J. Adhes Sci. Technol., 27, (2013).
  21. S. W. Lee, J. W. Park, C. H. Park, H. J. Kim, E. A. Kim, H. S. Woo, Int. J. Adhes. Adhes., 47, (2013).
  22. S. Kim, S. W. Lee, D. H. Lim, J. W. Park, C. H. Park, H. J. Kim, J. Adhes. Sci. Technol., 27, (2013).
  23. S. W. Lee, J. W. Park, C. H. Park, Y. E. Kwon, H. J. Kim, E. A. Kim, H. S. Woo, S. Schwartz, M. Rafailovich, J. Sokolov, Int. J. Adhes. Adhes., 44, (2013).
  24. Z. Czech, P. Robert, Mater. Chi. Poland, 2, (2009).