DOI QR코드

DOI QR Code

Geographic Distribution Analysis of Lunar In-situ Resource and Topography to Construct Lunar Base

달 기지 건설을 위한 달 현지 자원 및 지형의 공간 분포 분석

  • Hong, Sungchul (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Young-Jae (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Seo, Myungbae (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Shin, Hyu-Soung (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology)
  • 홍성철 (한국건설기술연구원 미래융합연구본부) ;
  • 김영재 (한국건설기술연구원 미래융합연구본부) ;
  • 서명배 (한국건설기술연구원 미래융합연구본부) ;
  • 신휴성 (한국건설기술연구원 미래융합연구본부)
  • Received : 2018.04.06
  • Accepted : 2018.06.01
  • Published : 2018.06.30

Abstract

As the Moon's scientific, technological, and economic value has increased, major space agencies around the world are leading lunar exploration projects by establishing a road map to develop lunar resources and to construct a lunar base. In addition, as the lunar base construction requires huge amounts of resources from the Earth, lunar in-situ construction technology is being developed to produce construction materials from local lunar resources. On the other hand, the characteristics of lunar topography and resources vary spatially due to the crustal and volcanic activities inside the Moon as well as the solar wind and meteorites from outside the Moon. Therefore, in this paper, the geospatial analysis of lunar resource distribution was conducted to suggest regional consideration factors to apply the lunar in situ construction technologies. In addition, the lunar topographic condition to select construction sites was suggested to ensure the safe landing of a lunar lander and the easy maneuvering of a rover. The lunar topographic and resource information mainly from lunar orbiters were limited to the lunar surface with a low spatial resolution. Rover-based lunar exploration in the near future is expected to provide valuable information to develop lunar in situ construction technology and select candidate sites for lunar base construction.

달의 과학적 기술적 경제적 가치가 증대됨에 따라 세계 주요 우주국들은 달 자원 개발 및 달 기지 건설을 위한 로드맵을 수립하여 달 탐사 사업을 단계적으로 수행하고 있다. 또한 달 표면에 전초기지를 건설하기 위해서는 막대한 양의 자원을 지구로부터 수송해야하므로, 달 표면에 존재하는 자원을 활용하는 현지 건설기술(Lunar In Situ Construction Technology)이 개발 중이다. 하지만 달 지형과 자원은 달 내부의 지각 및 화산활동과 달 외부로부터의 태양광, 운석 충돌 등으로 인해 지역별로 다양한 특성을 지닌다. 이에 본 논문에서는 달 자원의 공간적 분포분석을 통해 현지 건설기술의 적용을 위한 고려사항을 제시하였다. 더불어 달 기지 건설을 위해서는 달 착륙선의 안정적인 착륙과 로버의 이동 용이성을 고려해야 하므로, 달 건설 후보지역 선정을 위한 지형조건을 함께 제시하였다. 현재 달 궤도선으로부터 주로 관측되는 달 지형 및 자원 정보는 낮은 공간해상력과 함께 달 표면에 국한되는 제약점이 있다. 향후 전개될 로버 중심의 달 탐사는 달 현지 건설기술 개발과 달 기지 건설후보지 선정에 유용한 정보를 제공할 수 있을 것으로 기대된다.

Keywords

References

  1. G. Ju, "Development Status of Domestic & Overseas Space Exploration & Associated Technology", Journal of The Korean Society for Aeronautical and Space Sciences, vol. 44, no. 8, pp. 741-757, 2016. DOI: https://doi.org/10.5139/JKSAS.2016.44.8.741
  2. Ministry of Science and ICT, "3rd Basic Space Development Plan", 2018.
  3. K. J. Kim "A Research Trend on Lunar Resource and Lunar Base", The Journal of The Petrological Society of Korea, vol. 26, no. 4, pp. 373-384, 2017. DOI: https://doi.org/10.7854/JPSK.2017.26.4.373
  4. NASA, "NASA Radar Finds Ice Deposits at Moon's North Pole", Available from https://www.nasa.gov/mission_pages/Mini-RF/multimedia/feature_ice_like_deposits.html.(accessed June, 20. 2017)
  5. E. N. Slyuta, A. M. Abdrakhimov, E. M. Galimov, V. I. Venadsky, "The Estimation of Helium-3 Probable Reserves in Lunar Regolith", 38th Lunar and Planetary Science Conference, Abstract no. 2175, 2007.
  6. ISECG, "The Global Exploration Roadmap", Available from https://www.nasa.gov/sites/default/files/files/GER- 2013_Small.pdf (accessed February, 6, 2018)
  7. NASA, "New Space Policy Directive Calls for Human Expansion Across Solar System", https://www.nasa.gov/press-release/new-space-policy-directive-calls-for-human-expansion-across-solar-system (accessed March, 19, 2018)
  8. ESA, "Moon Village: A Vision for Global Cooperation and Space 4.0", Available from https://www.esa.int/About_Us/Ministerial_Council_2016/Moon_Village (accessed March, 19, 2018)
  9. G. B. Sanders, W. E. Larson, "Integration of in-situ resource utilization into lunar/Mars exploration through field analogs", Advances in Space Research, vol. 47, pp. 20-29, 2011. DOI: https://doi.org/https://doi.org/10.1016/j.asr.2010.08.020
  10. L. A. Taylor, "Generation of native Fe in lunar soil", Engineering, Construction, and Operations in Space, ASCE, New York, pp. 67-77, 1988.
  11. R. L. Korotev, R. V. Morris, "On the Maturity of Lunar Regolith", Workshop on New Views of the Moon, pp. 49. January. 1998.
  12. J. A. Happel, "Indigenous materials for lunar construction", Applied Mechanical Reviews, vol. 46, no. 6, pp. 313-325, 1993. DOI: https://doi.org/10.1115/1.3120360
  13. ESA, "3D printing of a model building block for a lunar base outer shell", http://www.esa.int/Our_Activities/Space_Engineering_Technology/Shaping_the_Future/3D_ printing _of_a_model_building_block_for_a_lunar_base_outer_shell. (Accessed November 13, 2017)
  14. E. J. Faierson, K. V. Logan, B. K., Stewwart M. P. Hunt, "Demonstration of concept for fabrication of lunar physical assets utilizing lunar regolith simulant and a geothermite reaction", Acta Astronautica, vol. 67, no. 1-2, pp. 38-45, 2010. DOI: https://doi.org/10.1016/j.actaastro.2009.12.006
  15. Delgado, A., E. Shafirovich, "Towards better combustion of lunar regolith with magnesium", Combustion and Flame, vol. 160, pp. 1876-1882, 2013. DOI: https://doi.org/10.1016/j.combustflame.2013.03.021
  16. D. Vaniman, D. Pettit, G. Heiken, "Uses of lunar sulfur. Second Conference on Lunar Bases and Space Activities of the 21st Century", Johnson Space Center, NASA, USA, pp. 429-435, 1992.
  17. H. A. Omar, "Production of lunar concrete using molten sulphur", Final Research Report, Grant NAG8-278, NASA, USA.1993.
  18. B. Khoshnevis, A. Carlson, N. Leach, M. Thangavelu, "Contour crafting simulation plan for lunar settlement infrastructure buildup", Earth & Space 2012: Engineering, Construction, and Operations in Challenging Environments", ASCE, Pasadena, California, USA, pp. 1458-1466. 2012. DOI: https://doi.org/10.1061/9780784412190.155
  19. The New Stack, "3D printed buildings made by robots for the earth, moon and mars", Available from https://thenewstack.io/3d-printed-buildings-made-by-robots-for-the-earth-moon-and-mars/ (accessed November 29, 2017)
  20. M. P. Bodiford, K. H. Burks, M. R. Perry, R. W. Cooper, and M. R. Fiske, "Lunar in situ materials-based habitat technology development efforts at NASA/MSFC", Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environments, ASCE, Houston, Texas, USA, pp. 1-8. 2006. DOI: https://doi.org/10.1061/40830(188)70
  21. J. Lee, T. S. Lee, K. Y. Ahn, B. C. Chang, "Workability of Polymeric Concrete for Lunar Infrastructure", Journal of the Korean Society of Civil Engineers, vol. 37, no. 2, pp. 507-512, 2017. DOI: https://doi.org/10.12652/Ksce.2017.37.2.0507
  22. USGS, "U.S.G.S. Planetary GIS Web Server", Available from https://webgis.wr.usgs.gov/index.html (accessed April, 30. 2018)
  23. NASA, "PDS Geosciences Node: Lunar Reconnaissance Orbiter", Available from http://pds-geosciences.wustl.edu/missions/lro/default.htm (accessed April, 30. 2018)
  24. D. Rapp, "Lunar ISRU Technology" Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars. Springer, Berlin, Heidelberg, pp. 91-111, 2013. DOI: https://doi.org/10.1007/978-3-642-32762-9_3
  25. NASA, "Apollo 17 Extravehicular Activity", Available from https://www.nasa.gov/mission_pages/apollo/images.html (accessed May, 09, 2018)
  26. A. A. Berezhnoy, J. Flahaut, C. Wohler, D. Rommel, A. Grumpe, E. A. Feoktistova, V. V. Shevchenko, C. Quantin, P. Williams "Candidate landing sites for the luna-glob mission," The 7th Lunar Exploration Symposium, pp. 235-245