DOI QR코드

DOI QR Code

Graphene Quantum Dot Interfacial Layer for Organic/Inorganic Hybrid Photovoltaics Prepared by a Facile Solution Process

용액 공정을 통한 그래핀 양자점 삽입형 유/무기 하이브리드 태양전지 제작

  • Kim, Youngjun (Department of Materials Science and Engineering, Hongik University) ;
  • Park, Byoungnam (Department of Materials Science and Engineering, Hongik University)
  • 김영준 (홍익대학교 신소재공학과) ;
  • 박병남 (홍익대학교 신소재공학과)
  • Received : 2018.04.05
  • Accepted : 2018.06.01
  • Published : 2018.06.30

Abstract

This paper reports that the electronic properties at a $P3HT/TiO_2$ interface associated with exciton dissociation and transport can be tailored by the insertion of a graphene quantum dot (GQD) layer. For donor/acceptor interface modification in an $ITO/TiO_2/P3HT/Al$ photovoltaic (PV) device, a continuous GQD film was prepared by a sonication treatment in solution that simplifies the conventional processes, including laser fragmentation and hydrothermal treatment, which limits a variety of component layers and involves low cost processing. The high conductivity and favorable energy alignment for exciton dissociation of the GQD layer increased the fill factor and short circuit current. The origin of the improved parameters is discussed in terms of the broad light absorption and enhanced interfacial carrier transport.

최근 태양전지의 Donor/Acceptor 계면에 그래핀 양자점을 완충 층으로 삽입하여 광 전환 효율을 향상시킨 많은 연구 결과들이 보고되었다. 그래핀 양자점은 그래핀 단일 층이 여러 겹 쌓여서 구성된 수 나노미터 크기의 물질로, 양자 제한 효과에 의한 밴드갭 조절이 가능하다는 장점을 가지고 있다. 하지만 대부분의 그래핀 양자점을 활용한 연구에서 레이저 분쇄나 수열 처리 등과 같은 복잡하고 접근성이 떨어지는 용액 공정들이 박막 형성에 사용되고 있다. 본 연구에서는 Indium tin oxide(ITO)/$TiO_2$/Poly(3-hexylthiophene)(P3HT)/Al 구조로 구성된 태양전지의 Donor/Acceptor 계면에 그래핀 양자점을 단순한 초음파 처리를 통해 용매에 분산시켜 박막 공정에 사용하였음에도 불구하고, 단락 전류를 $1.26{\times}10^{-5}A/cm^2$에서 $7.46{\times}10^{-5}A/cm^2$으로, 곡선인자(Fill factor)를 0.27에서 0.42로 향상된 결과를 확인하였다. 이러한 결과를 트랜지스터 구조의 소자를 활용한 전기적 성질 확인과 순환 전압-전류법을 통한 에너지 레벨 분석 및 가시광 흡수 스펙트럼 분석 등을 통하여 고찰하였다. 본 연구 결과를 통해 그래핀 양자점 용액 공정이 복잡한 처리 공정 없이도, 보다 폭넓게 활용 가능할 것으로 예상된다.

Keywords

References

  1. Graetzel, Michael, et al., "Materials interface engineering for solution-processed photovoltaics.", Nature, 488.7411 (2012): 304. https://doi.org/10.1038/nature11476
  2. de Freitas, Jilian Nei, Joao Paulo de Carvalho Alves, and Ana Flavia Nogueira., "Hybrid Solar Cells: Effects of the Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells.", Nanoenergy. Springer, Cham, 2018. 1-68.
  3. Reeja-Jayan, B., and A. Manthiram., "Influence of polymer-metal interface on the photovoltaic properties and long-term stability of nc-TiO2-P3HT hybrid solar cells.", Solar Energy Materials and Solar Cells, 94.5 (2010): 907-914. DOI: https://doi.org/10.1016/j.solmat.2010.01.021
  4. Reeja-Jayan, B., and A. Manthiram., "Influence of polymer-metal interface on the photovoltaic properties and long-term stability of nc-TiO2-P3HT hybrid solar cells.", Solar Energy Materials and Solar Cells, 94.5 (2010): 907-914. DOI: https://doi.org/10.1016/j.solmat.2010.01.021
  5. Shoaee, Safa, et al., "Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance.", Advanced materials, 26.2 (2014): 263-268. DOI: https://doi.org/10.1002/adma.201303304
  6. Baran, Derya, et al., "Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells.", Nature materials, 16.3 (2017): 363. https://doi.org/10.1038/nmat4797
  7. Dang, Minh Trung, Lionel Hirsch, and Guillaume Wantz., "P3HT: PCBM, best seller in polymer photovoltaic research.", Advanced Materials, 23.31 (2011): 3597-3602. DOI: https://doi.org/10.1002/adma.201100792
  8. Ahmad, Muhammad Shakeel, A. K. Pandey, and Nasrudin Abd Rahim., "Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review.", Renewable and Sustainable Energy Reviews, 77 (2017): 89-108. DOI: https://doi.org/10.1016/j.rser.2017.03.129
  9. Seo, Ji-Youn, et al., "Boosting the Efficiency of Perovskite Solar Cells with CsBr‐Modified Mesoporous TiO2 Beads as Electron‐Selective Contact.", Advanced Functional Materials (2018). DOI: https://doi.org/10.1002/adfm.201705763
  10. Zhu, Zonglong, et al., "Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots.", Journal of the American Chemical Society, 136.10 (2014): 3760-3763. DOI: https://doi.org/10.1021/ja4132246
  11. Qin, Yuancheng, et al., "Top-down strategy toward versatile graphene quantum dots for organic/inorganic hybrid solar cells." ACS Sustainable Chemistry & Engineering, 3.4 (2015): 637-644. DOI: https://doi.org/10.1021/sc500761n
  12. Li, Liang-shi, and Xin Yan., "Colloidal graphene quantum dots.", The Journal of Physical Chemistry Letters, 1.17 (2010): 2572-2576. DOI: https://doi.org/10.1021/jz100862f
  13. Gupta, Vinay, et al., "Luminscent graphene quantum dots for organic photovoltaic devices.", Journal of the American Chemical Society 133.26 (2011): 9960-9963. DOI: https://doi.org/10.1021/ja2036749
  14. Li, Yan, et al., "Nitrogen-doped graphene quantum dots with oxygen-rich functional groups." Journal of the American Chemical Society, 134.1 (2011): 15-18. DOI: https://doi.org/10.1021/ja206030c
  15. Bacon, Mitchell, Siobhan J. Bradley, and Thomas Nann., "Graphene quantum dots.", Particle & Particle Systems Characterization, 31.4 (2014): 415-428. DOI: https://doi.org/10.1002/ppsc.201300252
  16. Sakamoto, Junji, et al., "Two‐Dimensional Polymers: Just a Dream of Synthetic Chemists.", Angewandte Chemie International Edition, 48.6 (2009): 1030-1069. DOI: https://doi.org/10.1002/anie.200801863
  17. Gritzner, G., and J. Kuta., "Recommendations on reporting electrode potentials in nonaqueous solvents (Recommendations 1983).", Pure and applied chemistry, 56.4 (1984): 461-466. DOI: https://doi.org/10.1351/pac198456040461
  18. Bredas, J. L., et al., "Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole.", Journal of the American Chemical Society, 105.22 (1983): 6555-6559. DOI: https://doi.org/10.1021/ja00360a004