DOI QR코드

DOI QR Code

Computer Simulation and Optimization Study on the Pressure-Swing Distillation of 1-propanol-benzene Mixture

1-프로판올과 벤젠 혼합물의 압력변환 증류공정을 통한 전산모사 및 공정 최적화

  • Park, Hoey Kyung (Department of Chemical Engineering, Kongju national university) ;
  • Cho, Jungho (Department of Chemical Engineering, Kongju national university)
  • Received : 2018.04.10
  • Accepted : 2018.06.01
  • Published : 2018.06.30

Abstract

Computer modeling and optimization works have been performed for the separation of the binary mixture of 1-propanol and benzene through a pressure-swing distillation. PRO/II with PRIVISION V10.0 at Schneider Electric company and NRTL liquid activity coefficient model were utilized. The sum of the total reboiler heat duties of the low-high and high-low pressure column configurations were compared. To minimize the utility consumptions, low column, and high column to obtain pure benzene at the top, the number of theoretical stages and optimal feed tray locations for each distillation column were determined and the reflux ratios for each distillation column were also adjusted. As a result of the optimization works, the sum of the total reboiler heat duties for the high-low and low-high pressure configurations were $3.10{\times}10^6kcal/h$ and $2.75{\times}10^6kcal/h$, respectively. In the case where heat integration was applied to low-high pressure configurations, 57.36 % of the total reboiler heat duties could be saved compared to the high-low pressure configurations.

압력변환 증류공정(Pressure-Swing Distillation, PSD)을 통해서 1-프로판올과 벤젠 이성분계 혼합물의 분리공정에 대한 전산모사 및 공정 최적화를 수행하였다. Schneider Electric사의 PRO/II with PROVISION V10.0을 사용하였으며, 열역학 모델식으로는 NRTL 액체 활동도계수 모델식을 적용하였다. 고압에서 저압 증류탑 배열 공정과 저압에서 고압 증류탑 배열공정에 대한 재비기의 총 heat duty의 소모량의 합을 서로 비교하였다. 유틸리티 소모량을 최소화하기 위해서 각 공정의 저압 증류탑과 고압 증류탑 상부 벤젠의 조성, 이론단수와 원료 주입단의 위치를 최적화하였으며, 각각의 증류탑의 환류비를 조절하였다. 공정 최적화 수행결과, 총 재비기 heat duty 값은 각각 고압에서 저압 증류탑 배열 공정의 경우 $3.10{\times}10^6kcal/h$ 이었으며, 저압에서 고압 증류탑 배열 공정의 경우 $2.75{\times}10^6kcal/h$로 나타났다. 또한, 저압-고압 증류탑 배열 공정에 열통합 공정(heat integration)을 적용한 경우 재비기의 총 heat duty 값이 고압-저압 증류탑 배열 공정에 비해서 약 57.36%정도 적게 추산되었다.

Keywords

References

  1. I. Nagata, "Isothermal vapour-liquid equilibria for the ethanol+1-propanol+acetonitrile+benzene system", Phys. Chem. Liq., vol. 21, pp. 137-145, 1990. DOI:https://doi.org/10.1080/00319109008028475
  2. R. S. Andrade, M. Iglesias, "Fluid phase topology of benzene+cyclohexane+1-propanol at 101.3 kPa", Int J. Thermophys vol. 36, pp. 1498-1518, 2015. DOI:https://doi.org/10.1007/s10765-015-1922-3
  3. L. L. William, L. I. Chien, "Design and control of distillation systems for separating azeotropes", A John Wiley & Sons, INC., Publication, p.371-374, 2010.
  4. X. Wu, JH. Nho, Kim, D. S., JH. Cho, "Comparison of consumption of two-column configuration and three-column configration in the extractive distillation precess for high purity refinement of isopropyl alcohol", Asian J. Chem., vol. 26, no. 16, pp. 5223-5229, 2014. DOI:https://doi.org/10.14233/ajchem.2014.16804
  5. J. R. Messick, W. R. Ackley, G. D. Moon, "Anhydrous Ethanol Distillation Method and Apparatus," U.S.Pat. US4,422,903, Dec. 1983.
  6. JH. Cho, J. K. Jeon, "Optimization Study on the Azeotropic distillation process for isopropyl alcohol dehydration", Korean J. Chem. Eng., vol. 23, no. 1, pp. 1-7, 2006. DOI:https://doi.org/10.1007/BF02705684
  7. JH. Cho, J. K. Park, J. K. Jeon, "Comparison of three and two-column configurations in ethanol dehydration using azeotropic Distillation", J. Ind. Eng. Chem., vol. 12, no. 2, pp. 206-215, 2006. https://doi.org/10.1021/ie50122a042
  8. L. L. William, L. I. Chien, "Design and Control of Distillation systems for Separating Azeotropes", A John Wiley & Sons, Inc., 2010.
  9. E. K. Hilmen, "Separation of Azeotropic Mixtures: Tools for Analysis and Studies on Batch Distillation Operation", Ph. D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2000.
  10. J. H. Lee, J. H. Cho, D. M. Kim, S. J. Park, "Separation of Tetrahydrofuran and Water using Pressure Swing Distillation: Modeling and Optimization", Korean. J. Chem. Eng., vol. 28, no. 2, pp. 591-596, 2011. DOI:https://doi.org/10.1007/s11814-010-0467-1
  11. J. S. Cho, Y. M. Kim, J. H. Noh, D. S. Kim, JH. Cho, "Experimental Study of Vapor-Liquid Equilibrium and Optimization of Pressure-Swing Distillation for Methanol-Dimethyl Carbonate Binary System", Asia J. Chem., vol. 26, no. 20, pp. 6769-6779, 2014.
  12. K. W. Kim, J. S. Shin, S. H. Kim, S. K. Hong, J. H. Cho, S. J. Park, "A Computational Study on the Separation of Acetonitrile and Water Azeotropic Mixture Using Pressure Swing Distillation", J. Chem. Eng. Japan, vol. 46, no. 5, pp. 1-6, 2013. DOI:http://dx.doi.org/10.1252/jcej.12we252
  13. H. K. Park, D. S. Kim, J. H. Cho, "Simulation Optimization Study on the Pressure-Swing Distillation of Ethanol-Benzene Azeotrope", Korean Chem. Eng. Res., vol. 53, no. 4, pp. 450-456, 2015. DOI:http://dx.doi.org/10.9713/kcer.2015.53.4.450
  14. J. Gross and G. Sadowski, "Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules," Industrial and Engineering Chemistry Research, vol. 40, no. 4, pp. 1244-1260, 2001. DOI:https://doi.org/10.1021/ie0003887
  15. S. H. Huang and M. Radosz, "Equation of State for Small, Large, Polydisperse and Associating Molecules", Industrial and Engineering Chemistry Research, vol. 29, no. 11, pp. 2284-2294, 1990. DOI:https://doi.org/10.1021/ie00107a014
  16. S. H. Huang and M. Radosz, "Equation of State for Small, Large, Polydisperse and Associating Molecules: Extension to Fluid Mixtures", Industrial and Engineering Chemistry Research, vol. 30, no. 8, pp. 1994-2005, 1991. DOI:https://doi.org/10.1021/ie00056a050
  17. J. T. Jung, J. H. Rho, and J. H. Cho, "A Study for Carbon Dioxide Removal Process Using N-Methyl-2-Pyrrolidone Solvent in DME Production Process", Clean Technology, vol. 18, no. 4, pp. 347-354, 2012. DOI:https://doi.org/10.7464/ksct.2012.18.4.347
  18. G. G. Lim, S. K. Park, J. H. Rho, and Y. S. Baek, "A Study on Separation Process for Over 95 wt% DME Recovery from DME Mixture Gases," Clean Technology, vol. 15, no. 4, pp. 287-294, 2009.
  19. JH. Noh, H. K. Park, DS. Kim, JH. Cho, " Comparative Study on the Estimation of $CO_2$ absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach", J. Korea Academia-Industrial cooperation Society, vol. 18, no. 10, pp. 136-152, 2017. DOI:https://doi.org/10.5762/KAIS.2017.18.10.136
  20. H. Renon, J. M. Prausnitz, "Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures", AIChE J., vol. 14, no. 1, pp. 135-144, 1968. DOI:http://dx.doi.org/10.1002/aic.690140124
  21. Z. Lei, B. Chen, Z. Ding, "Special Distillation Process, Elsevier Science", p.320-327, 2005. DOI: http://dx.doi.org/10.1016/B978-044451648-0/50007-0
  22. J. J. Jr. McKetta, "Unit Operations Handbook 1", CRC Press, pp. 298-322, 1992.
  23. "PRO/II Application Briefs", Simulation Sciences Inc. 2005.
  24. Choonghee Kwon, Jaekyung Yang, Finding Optimal Conditions for the Densification Process of Carbon Materials, J. Soc. Korea Ind. Syst. Eng, vol. 40, no. 3 pp. 76-82, Sep. 2017. DOI: https://doi.org/10.11627/jkise.2017.40.3.076
  25. Yong-Jun Kim, Young-Bae Chung, A Study on the Design of Tolerance for Process Parameter using Decision Tree and Loss Function, J. Soc. Korea Ind. Syst. Eng, vol. 39, no. 1, pp. 123-129, Mar. 2016. DOI: http://dx.doi.org/10.11627/jkise.2016.39.1.123