DOI QR코드

DOI QR Code

The Characteristics of Compressive Strength in Mortar with Internal Curing According to Curing Condition

내부양생을 적용한 모르타르의 양생조건에 따른 압축강도 특성

  • Kim, Joo-Hyung (Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Cho, Young-Keun (Construction Technology Research Center, Korea conformity Laboratories) ;
  • Lee, Kwang-Myong (Architectural and Environmental System Engineering, Sungkyunkwan University)
  • 김주형 (성균관대학교 건설환경시스템공학과) ;
  • 조영근 (한국건설생활환경시험연구원 건설기술연구센터) ;
  • 이광명 (성균관대학교 건설환경시스템공학과)
  • Received : 2018.04.03
  • Accepted : 2018.05.02
  • Published : 2018.06.30

Abstract

The use of high-strength concrete in construction have been increasing steadily. However, high-strength concrete has a low water-binder ratio, and the problems such as cracks due to hydration heat and shrinkage during the hydration process at the early age. Recently, as a method to reduce the shrinkage of concrete, study of internal curing has carried out according to increasing about interest about it. In this study, the effect of compressive strength on the curing condition(drying, moist, water) was investigated by using artificial lightweight aggregate(LWA) in high strength and high volume mortar. As a result of autogenous shrinkage, the effect of shrinkage reduction was enhanced depending on the increasing of LWA replacement. According to the curing condition, the results of compressive strength showed the different trend. The compressive strength has increased on the drying and moisture condition and decreased on the water condition.

건설 구조물에서의 고강도 콘크리트 사용은 꾸준히 증가하고 있다. 그러나 고강도 콘크리트는 상대적으로 낮은 물-바인더비를 가지고 있어 초기 재령에서 수화과정에 발생하는 수화열 및 수축 등으로 인해 균열 등과 같은 문제점이 발생으로 인해 그 대책이 시급한 실정이다. 최근에 수축을 저감할 수 있는 방법으로 내부양생에 대한 관심이 대두되고 있으며 연구가 활발히 이루어지고 있다. 본 연구에서는 고강도 및 하이볼륨 모르타르에 대해 인공경량골재(LWA)를 이용하여 내부양생 효과를 검증하고 여러 현장조건을 고려하여 양생조건(기중, 습윤, 수중)에 따른 압축강도 영향에 대한 연구를 수행하였다. 자기수축 실험을 통해 고강도 및 플라이애시를 혼입한 하이볼륨 모르타르에서 인공경량골재 혼입률이 증가할수록 수축저감 효과가 커지는 것을 확인하였다. 양생조건에 따라 압축강도 영향은 조금씩 다른 경향을 보이고 있으며, 기중 및 습윤 조건에서는 일반적으로 강도를 증가시키고 수중조건에서는 감소하는 것으로 나타났다.

Keywords

References

  1. ACI Committee 308. (2013). ACI(308-213) R-13 Report on Internally Cured Concrete Using Prewetted Absorptive Lightweight Aggregate, American Concrete Institute.
  2. ASTM C 1698-09. (2014). Standard Test Method for Autogenous Strain of Cement Paste and Mortar.
  3. Bentur, A. (2003). Early Age Cracking in Cementitious Systems: Report of RILEM Technical Committee 181-EAS 'Early Age Shrinkage Induced Stresses and Cracking in Cementitious Systems', RILEM Publ, Bagneux, France.
  4. Bentz, D.P. (2007). Internal curing of high performance blended cement mortars, ACI Material Journal, 104(4), 408-414.
  5. Bentz, D.P., Snyder, K.A. (1999). Protected paste volume in concrete: extension to internal curing using saturated lightweight fine aggregate. Cement and Concrete Research, 29(11), 1863-1867. https://doi.org/10.1016/S0008-8846(99)00178-7
  6. Bentz, D.P., Weiss, W.J. (2011). Internal Curing: A 2010 State-of-the-Art Review, US Department of Commerce, National Institute of Standards and Technology Internal Report NISTIR 7765.
  7. Castro, J., De la Varga, I., Golias, M., Weiss, W. (2010). Extending internal curing concepts to mixtures containing high volumes of fly ash, International Bridge Conference.
  8. Cusson, D., Hoogeveen, T. (2005). Internally-Cured High-performance Concrete under Restrained Shrinkage and Creep, CONCREEP 7 Workshop on Creep, Shrinkage and Durability of Concrete and Concrete Structures, Nantes, France, 579-584.
  9. Cusson, D., Lounis, Z., Daigle, L. (2010). Benefits of internal curing on service life and lifecycle cost of high-performance concrete bridge decks-a case study. Cement and Concrete Composites, 32(5), 339-350. https://doi.org/10.1016/j.cemconcomp.2010.02.007
  10. De la Varga, I., Castro, J., Bentz, D.P., Weiss, J. (2012). Application of internal curing for mixtures containing high volumes of fly ash, Cement and Concrete Composites, 34(9), 1001-1008. https://doi.org/10.1016/j.cemconcomp.2012.06.008
  11. KS F 2436. Testing Method for Time of Setting of Concrete Mixture by Penetration Resistance [in Korean].
  12. KS L ISO 679. Methods of Testing Cements - Determination of Strength [in Korean].
  13. Lura, P., Jensen, O.M., van Breugel, K. (2003). Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms, Cement and Concrete Research, 33(2), 223-232. https://doi.org/10.1016/S0008-8846(02)00890-6
  14. Persson, B. (1998). Experimental studies on shrinkage of high-performance concrete, Cement and Concrete Research, 28(7), 1023-1036. https://doi.org/10.1016/S0008-8846(98)00068-4
  15. Wasserman, R., Bentur, A. (1996). Interfacial interactions in lightweight aggregate concretes and their influence on the concrete strength, Cement and Concrete Composite, 18(1), 67-76. https://doi.org/10.1016/0958-9465(96)00002-9
  16. Weiss, W.J., Montanari, L. (2017). Guide Specification for Internally Curing Concrete, National Concrete Pavement Technology Center Institute for Transportation.
  17. Zhang, M., Gjorv, O.E. (1992). Penetration of cement paste into lightweight aggregate, Cement and Concrete Research, 22(1), 47-55. https://doi.org/10.1016/0008-8846(92)90135-I
  18. Zou, D., Weiss, J. (2014). Early age cracking behavior of internally cured mortar restrained by dual rings with different thickness. Construction and Building Materials, 66, 146-153. https://doi.org/10.1016/j.conbuildmat.2014.05.032