DOI QR코드

DOI QR Code

상승된 이산화탄소와 온도 그리고 한발 영향에 따른 감자의 군락 형태와 무기영양 변화

Impact of Elevated Carbon Dioxide, Temperature, and Drought on Potato Canopy Architecture and Change in Macronutrients

  • 이윤호 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 조현숙 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 김준환 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 상완규 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 신평 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 백재경 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 서명철 (농촌진흥청 국립식량과학원 작물재배생리과)
  • 투고 : 2018.03.30
  • 심사 : 2018.06.11
  • 발행 : 2018.06.30

초록

본 연구는 옥외환경조절 시설인 SPAR챔버에서 향후 기후변화가 지속 될 경우 상승된 이산화탄소와 온도 그리고 한발에 따른 감자의 군락 형태와 무기영양 변화에 대한 결과는 다음과 같다. 1. AT+2.8C700는 상승된 $CO_2$와 고온에 의하여 초장과 엽면적 그리고 건물중이 상당히 증가 하였고, AT+2.8C700DS는 한발의 영향으로 상당히 감소하였다. 2. 수확기에서 잎은 AT+2.8C700은 ATC450에 비하여 질소와 인산이 감소한 반면 칼륨, 칼슘 그리고 마그네슘 농도가 증가하였다. 괴경은 질소, 인산 그리고 칼륨이 감소하였으며, 칼슘과 마그네슘은 변화가 없었다. 반면, AT+2.8C700DS는 한발의 영향으로 무기영양 농도가 상대적으로 다른 처리비하여 낮았지만, 마그네슘 농도만 증가하였다. 3. $CO_2$와 온도 상승을 보면 AT+2.8C700는 ATC450에 비하여 질소 농도의 감소로 26% 단백질 함량이 감소를 하였다. 한발을 받은 AT+2.8C700DS보다 AT+2.8C700는 단백질 함량이 20%가 감소 하였다. 4. 따라서 상승된 $CO_2$ 농도와 한발은 무기영양의 변화뿐만 아니라 광합성 관련된 당과 아미노산 같은 2차 대사물질도 변화와 인간의 단백질 섭취에도 영향을 줄 것이다.

Elevated atmospheric carbon dioxide concentration ($CO_2$) is a major component of climate change, and this increase can be expected to continue into the crop and food security in the future. In this study, Soil-Plant-Atmosphere-Research (SPAR) chambers were used to examine the effect of elevated $CO_2$, temperature, and drought on the canopy architecture and concentration of macronutrients in potatoes (Solanum tuberosum L.). Drought stress treatments were imposed on potato plants 40 days after emergence. Under AT+2.8C700 (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$), at maximum leaf area, elevated $CO_2$, and no drought stress, a significant increase was observed in both the aboveground biomass and tuber, and for the developmental stage. Even though $CO_2$ and temperature had increased, AT+2.8C700DS (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$ under drought stress) under drought stress showed that the leaf area index (LAI) and dry weight were reduced by drought stress. At maturity, potatoes grown under $CO_2$ enrichment and no drought stress exhibited significantly lower concentrations of N and P in their leaves, and of N, P, and K in tubers under AT+2.8C700. In contrast, elevated $CO_2$ and drought stress tended to increase the tuber Mg concentration under AT+2.8C700DS. Plants grown in AT+2.8C700 had lower protein contents than plants grown under ATC450 (30-year average temperature at $400{\mu}mol\;mol^{-1}$ of $CO_2$). However, plants grown under AT+2.8C700 showed higher tuber bulking than those grown under AT+2.8C700DS. These findings suggest that the increase in $CO_2$ concentrations and drought events in the future are likely to decrease the macronutrients and protein concentrations in potatoes, which are important for the human diet.

키워드

참고문헌

  1. Cao, W. X. and Tibbitts, T. W. 1997. Starch concentration and impact on specific leaf weight and element concentrations in potato leaves under aired carbon dioxide and temperature. Journal of Plant Nutrition. 20 : 87-881.
  2. Chaves, M., J. S. Pereira, J. Maroco, M. L. Rodrigues, C. P. P. Ricardo, M. L. Osorio, et al. 2002. How plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany. 89 : 907-916. https://doi.org/10.1093/aob/mcf105
  3. Donnelly, A., T. Lawson, J. Craigon, C. R. Black, J. I. Colls, and G. Landon. 2001. Effects of elevated $CO_2$ and O3 on tuber quality in potato (Solanum tuberosum L). Agriculture. Ecosystems and Environment. 87 : 273-285. https://doi.org/10.1016/S0167-8809(01)00144-X
  4. Earth system research laboratory ESR Global monitoring division. www.esrl.noaa.gov/gmd/ccgg/trends/global.html/.
  5. Fangmeier, A., L. De. Temmerman, C. Black, K. Persson, and V. Vorne. 2002. Effects of elevated $CO_2$ and /or ozone on nutrient concentrations and nutrient uptake of potatoes. European Journal of Agronomy. 17 : 353-368. https://doi.org/10.1016/S1161-0301(02)00071-0
  6. Fleisher, D. H., D. J. Timlin, and V. R. Reddy. 2008a. Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. Agricultural and Forest Meteorology. 148 : 1109-112. https://doi.org/10.1016/j.agrformet.2008.02.007
  7. Fleisher, D. H., D. J. Timlin, and V. R. Reddy. 2008b. Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agronomy Journal. 100 : 711-719. https://doi.org/10.2134/agronj2007.0188
  8. Fleisher, D. H, J. Barnaby, R. Sicher, J. P. Resop, D. J. Timlin, and V. R. Reddy. 2013. Effects of elevated $CO_2$ and cyclic drought on potato under varying radiation regimes. Agricultural and Forest Meteorology. 171-172 : 270-280. https://doi.org/10.1016/j.agrformet.2012.12.011
  9. Gifford, R. M., D. J. Barrrett, and J. Lutze. 2000. The effects of elevated ($CO_2$) on the C:N and C:P mass rations of plant tissues. Plant and Soil. 224 : 1-14. https://doi.org/10.1023/A:1004790612630
  10. Heagle, A. S., J. E. Miller, and W. A. Pursley. 2003. Atmospheric pollutants and trace gases. Journal Environment Quality. 32 : 1603-1610. https://doi.org/10.2134/jeq2003.1603
  11. Högy, P. and A. Fangmeier. 2009a. Atmospheric $CO_2$ enrichment affects potatoes: 1. Aboveground biomass production and tuber yield. European Journal of Agronomy. 30 : 78-84 https://doi.org/10.1016/j.eja.2008.07.007
  12. Högy, P. and A. Fangmeier. 2009b. Atmospheric $CO_2$ enrichment affects potatoes: 2. Tuber quality traits. European Journal of Agronomy. 30 : 85-94. https://doi.org/10.1016/j.eja.2008.07.006
  13. Jang, H. L., J. Y. Hong, N. J. Kim, M. H. Kim, S. R. Shin, and K. Y. Yoon. 2011. Comparison of nutrient components and physicochemical properties of general and colored potato. Korean Journal of Horticultural Science Technology. 29 : 144-150.
  14. Jefferies, R. A. 1995. Physiology of crop response to drought. In Haverkort, AJ, MacKerron DKL (Eds). Potato Ecology and Modelling of Crops under Condition Limiting Growth. Kluwer Academic Publishers, Dordrecht 61-74.
  15. Kimball, B. A., K. Kobayashi, and M. Bindi. 2002. Responses of agricultural crops to free-air $CO_2$ enrichment. Advances in Agronomy. 77 : 293-368.
  16. Kolbe, H. and S. Stephanbeckmann. 1997. Development, growth and chemical composition of the potato crop (Solanum tuberosum L) II Tuber and whole. Potato Research. 40 : 135-153. https://doi.org/10.1007/BF02358240
  17. Lawlor, D. W. 2002. Limitation to photosynthesis in water stressed leaves: stomata vs. metabolism and the role of ATP. Annals of Botany. 89(7) : 871-885. https://doi.org/10.1093/aob/mcf110
  18. Lisska, G. and Leszcyski, W. 1989. Potato science and technology. Elsevier Applied Science, New York
  19. Martin, B. and N. A. Ruiztorres. 1992. Effects of water-deficit stress on photosynthesis, its components and component limitations, and on water-use efficiency in wheat (triricumaestivum L.). Plant Physiology. 100 : 733-739. https://doi.org/10.1104/pp.100.2.733
  20. Mcgrath, J. and D. Lobell. 2013. Reduction of transpiration altered nutrient allocation conttibute to nutrient decline of crops grown in elevated $CO_2$ concentrations. Plant, Cell & Environ. 36 : 697-705 https://doi.org/10.1111/pce.12007
  21. Myers, S. S., Zanobetti, I. Kloog, P. Huybers, A. D. B. Leakey, A. Blom, E. Carlisel, H. L. Dietterich, G Fitzgerald, T. Hasegawa, N. M. Holbrook, R. L. Nelson, M. J. Ottman, V. Raboy, H. Sakai, K. A. Sartor, J. Schwartz, S. Seneweera, M. Tausz, and Y. Usui. 2016. Rising $CO_2$ threatens human nutrition. Nature. 510(7503) : 139-142. https://doi.org/10.1038/nature13179
  22. Pikki, K., V. Vorne, K. Ojanpere, and H. Pleijel. 2007. Impact of elevated O3 and $CO_2$ exposure on potato (Solanum tuberosum L. cv Bintje) tuber macronutrients (N, P, K, Mg, Ca). Agriculture, Ecosystems and Environment. 118 : 55-64. https://doi.org/10.1016/j.agee.2006.04.012
  23. Reddy, K. R., H. F. Hodges, J. J. Red, J. M. Mckinion, J. T. Baker, L. Trapley, and V. R. Redd. 2001. Soil-plant-atmosphere-research (SPAR) facility: A tool for plant research and modelling. Biotronics. 30 : 27-50.
  24. Rolando, J. L., D. Raníez, W. Yactayo, P. Monneveux, and R. Quiroz. 2015. Leaf greenness as drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany: 110 : 27-35. https://doi.org/10.1016/j.envexpbot.2014.09.006
  25. Rykaczwska, K. 2015.The effect of high temperature occurring in subsequent stages of plant development yield and tuber physiological defects. American Journal Potato Research. 92 : 339-349. https://doi.org/10.1007/s12230-015-9436-x
  26. Schittenhenlm, S., H. Sourell, and F. J. Lopmeier. 2006. Drought resistance of potato cultivars with contrasting canopy architecture. European Journal of Agronomy. 24 : 193-202. https://doi.org/10.1016/j.eja.2005.05.004
  27. Taub, D. R., B. Miller, and H. Allen. 2008. Effects of elevated $CO_2$ on the protein concentration of food crops: a meta-analysis. Global change Biology. 14 : 565-575. https://doi.org/10.1111/j.1365-2486.2007.01511.x
  28. Tindal, J. A., H. A, Mills, and D. E. Radcliffe. 1990. The effect of root zone temperature on nutrient uptake of tomato. Journal of Plant Nutrient 13 : 939-956. https://doi.org/10.1080/01904169009364127
  29. Walworth, J. L. and D. E. Carling. 2002. Tuber initiation and development in irrigated and non-irrigated potatoes. Potato Research. 79 : 387-395. https://doi.org/10.1007/BF02871683
  30. Wegener, C. B., H. U. Jurgens, and G. Jansen. 2017. Drought stress affects nutritional and bioactive compounds in potatoes (Solanum tuberum L.) relevant to human health. Functional Foods in Health and Disease 7 : 17-35. https://doi.org/10.31989/ffhd.v7i1.279
  31. Yamaguchi, M., H. Timm, and A. R. Spurr. 1964. Effects of soil temperature on growth and nutrition of potato plants and tuberization, composition and periderm structure of tubers. Journal for the American Society for Horticultural Science. 84 : 412-423.
  32. Ziska, L. and A. Crimmins. 2016. The impacts of climate change on human health in the United States, A scientific assessment, 7 food safety, nutrition, and distribution US. Global Change Research Program. 190-216.