DOI QR코드

DOI QR Code

2018년 4월 6일과 15일 황사의 광물학적 특성

Mineralogical Properties of Asian Dust in April 6 and 15, 2018, Korea

  • 정기영 (안동대학교 지구환경과학과)
  • Jeong, Gi Young (Department of Earth and Environmental Sciences, Andong National University)
  • 투고 : 2018.06.07
  • 심사 : 2018.06.21
  • 발행 : 2018.06.30

초록

황사(아시아 먼지)의 광물학적 특성에 대한 장기 관측의 일환으로, 2018년 4월 6일과 15일 황사 현상시에 채집한 두개의 황사시료에 X선회절(XRD)과 주사전자현미경(SEM) 분석을 실시하였다. XRD 분석결과, 두 시료는 시기의 차이에도 불구하고 광물학적 특성은 유사하다. 층상규산염 점토광물의 총함량이 62 wt% 정도이었으며, 이 중에서 일라이트-스멕타이트류 점토광물의 함량이 55% 정도로 가장 높았고, 녹니석과 캐올리나이트가 각각 3% 및 4% 정도씩 함유되어 있었다. 그 외 비층상 규산염광물로서 석영 18%, 사장석 9%, K-장석 3%, 방해석 3%, 석고 2-4%가 함유되어 있었다. 개별입자의 SEM 화학분석으로 구한 황사의 광물조성도 XRD 정량분석결과와 부합한다. 황사의 주요 광물인 일라이트-스멕타이트류 점토광물은 $1{\mu}m$ 이하 초미세입자들로서 응집체 입자를 형성하거나, 석영, 사장석, K-장석, 녹니석, 방해석 등의 큰 입자들을 피복한다. 방해석은 종종 나노크기의 섬유상 집합체로, 그리고 석고는 납작한 자형결정으로 점토와 함께 황사입자를 형성한다. 2018년 4월 황사시료의 광물학적 특성은 2012년 시료와 비교하면 점토함량이 높지만, 다른 예년의 시료들과 유사하다.

Mineralogical properties of two Asian dust (Hwangsa) samples collected during dust events in April 6 and 15, 2018 were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analyses showed that Asian dusts were dominated by phyllosilicates (62 wt%) comprising illite-smectite series clay minerals (ISCMs) (55%), chlorite (3%) and kaolinite (4%). Nonphyllosilicate minerals were quartz (18%), plagioclase (9%), K-feldspar (3%), calcite (3%), and gypsum (2-4%). Mineral compositions determined by SEM chemical analyses were consistent with XRD data. ISCMs occur as submicron grains forming aggregate particles or coating coarse mineral grains such as quartz, plagioclase, K-feldspar, chlorite, and calcite. The ISCMs are often associated with calcite nanofibers and gypsum blades. Mineralogical properties of 2018 dusts were similar to those of previous dusts although clay contents were higher than that of coarse 2012 dust.

키워드

참고문헌

  1. Brindley, G.W. (1980) Order-disorder in clay mineral structures. In: Brindley, G.W., Brown, G. (eds.), Crystal Structures of Clay Minerals and Their X-ray Identification, Monograph 5, Mineralogical Society, London, 125-195.
  2. Chun, Y., Boo, K.-O., Kim, J., Park, S.-U., and Lee, M. (2001) Synopsis, transport, and physical characteristics of Asian dust in Korea. J. Geophys. Res., 106, D16, 18461-18469. https://doi.org/10.1029/2001JD900184
  3. Dentener, F.J., Carmichael, G.R., Zhang, Y., Lelieveld, J., and Crutzen, P.J. (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res., 101, 22869-22889. https://doi.org/10.1029/96JD01818
  4. Formenti, P., Schutz, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., Petzold, A., Scheuvens, D., Weinbruch, S., and Zhang, D. (2011) Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys., 11, 8231-8256, doi:10.5194/acp-11-8231-2011.
  5. Freedman, M.A. (2015) Potential sites for ice nucleation on aluminosilicate clay minerals and related materials. J. Phys. Chem. Lett., 6, 3850-3858. https://doi.org/10.1021/acs.jpclett.5b01326
  6. Glaccum, R.A. and Prospero, J.M. (1980) Saharan aerosols over the tropical north Atlantic-Mineralogy. Mar. Geol., 37, 295-321. https://doi.org/10.1016/0025-3227(80)90107-3
  7. Jeong, G.Y. (2007) Nanosized calcite in the Chinese loess. J. Miner. Soc. Korea, 20, 255-260.
  8. Jeong, G.Y. (2008a) Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. J. Geophys. Res.-Atmos., 113, D02208, doi: 10.1029/2007JD008606.
  9. Jeong, G.Y. and Achterberg, E.P. (2014) Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmos. Chem. Phys., 14, 12415-12428. https://doi.org/10.5194/acp-14-12415-2014
  10. Jeong, G.Y. and Chun, Y. (2006) Nanofiber calcite in Asian dust and its atmospheric roles. Geophys. Res. Lett., 33, L24802. https://doi.org/10.1029/2006GL028280
  11. Jeong, G.Y. and Nousiainen, T. (2014) TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling. Atmos. Chem. Phys., 14, 7233-7254. https://doi.org/10.5194/acp-14-7233-2014
  12. Jeong, G.Y., Hillier, S., and Kemp, R.A. (2008b) Quantitative bulk and single-particle mineralogy of a thick Chinese loess-paleosol section: implications for loess provenance and weathering. Quaternary Science Reviews, 27, 1271-1287. https://doi.org/10.1016/j.quascirev.2008.02.006
  13. Jeong, G.Y., Park, M.Y., Kandler, K., Nousiainen, T., and Kemppinen, O. (2016) Mineralogical properties and internal structures of individual fine particles of Saharan dust. Atmospheric Chemistry and Physics, 16, 12397-12410. https://doi.org/10.5194/acp-16-12397-2016
  14. Jeong, G.Y., Choi, H.-J., and Kwon, S.-K. (2011) Single-particle mineralogy and mixing state of Asian dust, spring, 2009. J. Miner. Soc. Korea, 24, 225-234. https://doi.org/10.9727/jmsk.2011.24.3.225
  15. Jeong, G.Y., Kim, J.Y., Seo, J., Kim, G.M., Jin, H.C., and Chun, Y. (2014) Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmos. Chem. Phys., 14, 505-521.
  16. Johnson, M.S. and Meskhidze, N. (2013) Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy, Geosci. Model Dev., 6, 1137-1155. https://doi.org/10.5194/gmd-6-1137-2013
  17. Kemppinen, O., Nousiainen, T., and Jeong, G.Y. (2015) Effects of dust particle internal structure on light scattering. Atmos. Chem. Phys., 15, 12011-12027. https://doi.org/10.5194/acp-15-12011-2015
  18. Klaver, A., Formenti, P., Caquineau, S., Chevaillier, S., Ausset, P., Calzolai, G., Osborne, S., Johnson, B., Harrison, M., and Dubovik, O. (2011) Physico-chemical and optical properties of Sahelian and Saharan mineral dust: in situ measurements during the GERBILS campaign. Quart. J. Royal Meteor. Soc., 137, 1193-1210. https://doi.org/10.1002/qj.889
  19. Korea Meteorological Administration (2018) http://www.weather.go.kr/weather/asiandust/graph.jsp.
  20. Korea Meteorological Satellite Center (2018) http://nmsc.kma.go.kr/html/homepage/ko/main.do.
  21. Kulkarni, G. and Dobbie, S. (2010) Ice nucleation properties of mineral dust particles: determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles. Atoms. Chem. Phys., 10, 95-105. https://doi.org/10.5194/acp-10-95-2010
  22. Mahowald, N.M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P.Y., Cohen, D.D., Dulac, F., Herut, B., Johansen, A.M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J.M., Shank, L.M., and Siefert, R.L. (2009) Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu. Rev. Mar. Sci., 1, 245-278. https://doi.org/10.1146/annurev.marine.010908.163727
  23. Matsumoto, J., Takahashi, K., Matsumi, Y., Yabushita, A., Shimizhu, A., Matsui, I., and Sugimoto, N. (2006) Scavenging of pollutant acid substances by Asian mineral dust particles. Geophys. Res. Lett., 33, L07816.
  24. Moore, D.M. and Reynolds Jr., R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 332pp.
  25. Okada, K., Naruse, H., Tanaka, T., Nemoto, O., Iwasaka, Y., Wu, P.-M., Ono, A., Duce, R.A., Uematsu, M., Merrill, J.T., and Arao, K. (1990) X-ray spectrometry of individual Asian dust-strom particles over the Japanese islands and the north Pacific Ocean. Atmos. Environ., 24A, 1369-1378.
  26. Park, M.Y. and Jeong, G.Y. (2016) Mineralogical properties of Asian dust sampled at Deokjeok Island, Incheon, Korea in February 22, 2015. J. Miner. Soc. Korea, 29, 79-87. https://doi.org/10.9727/jmsk.2016.29.2.79
  27. Reid, J.S., Jonsson, H.H., Maring, H.B., Smirnov, A., Savoie, D.L., Cliff, S.S., Reid, E.A., Livingston, J.M., Meier, M.M., Dubovik, O., and Tsay, S.C. (2003) Comparison of size and morphological measurements of coarse mode dust particles from Africa, J. Geophys. Res., 108, doi:10.1029/2002JD002485.
  28. Ro, C.-U., Hwang, H., Kim, H., Chun, Y., and Van Grieken, R. (2005) Single-particle characterization of four Asian dust samples collected in Korea, using low-Z particle electron probe X-ray microanalysis. Environ. Sci. Technol., 39, 1409-1419. https://doi.org/10.1021/es049772b
  29. Seinfeld, J.H., and 24 authors (2004) ACE-ASIA regional climatic and atmospheric chemical effects of Asian dust and pollution, Bull. Am. Meteorol. Soc., 85, 367-380. https://doi.org/10.1175/BAMS-85-3-367
  30. Sokolik, I.N. and Toon, O.B. (1999) Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res., 104, D8, 9423-9444. https://doi.org/10.1029/1998JD200048
  31. Swap, R., Garstang, M., Greco, S., Talbot, R., and Kollberg, P. (1992) Saharan dust in the Amazon Basin. Tellus, 44B, 133-149.
  32. Uematsu, M., Duce, R.A., Prospero, J.M., Chen, J.Q., Merill, J.T., and McDonald, R.L. (1983) Transport of mineral aerosol from Asia over the North Pacific Ocean. J. Geophys. Res. 88, 5343-5352. https://doi.org/10.1029/JC088iC09p05343
  33. Uno, I., Eguchi, K., Yurimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z., Hara, Y., and Sugimoto, N. (2009) Asian dust transported one full circuit around the globe. Nature Geoscience 557-560.

피인용 문헌

  1. Amorphous Silica in Soil Silt vol.31, pp.4, 2018, https://doi.org/10.9727/jmsk.2018.31.4.287
  2. Mineralogy, geochemistry, and eolian source of mountain soils on quartzite vol.55, pp.1, 2019, https://doi.org/10.14770/jgsk.2019.55.1.87