DOI QR코드

DOI QR Code

Controlling the Morphology of Polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) Membranes Via Phase Inversion Method

상전이법을 이용한 P(VDF-co-HFP) 분리막 구조제어

  • Song, Ye Jin (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Jong Hoo (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Ye Som (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Sang Deuk (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Cho, Young Hoon (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, Ho Sik (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Nam, Seung Eun (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, You In (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Son, Eun Ho (Interface Materials and Chemical Engineering Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Jeong F. (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 송예진 (분리막연구센터 화학소재연구본부 한국화학연구원) ;
  • 김종후 (분리막연구센터 화학소재연구본부 한국화학연구원) ;
  • 김예솜 (분리막연구센터 화학소재연구본부 한국화학연구원) ;
  • 김상득 (분리막연구센터 화학소재연구본부 한국화학연구원) ;
  • 조영훈 (분리막연구센터 화학소재연구본부 한국화학연구원) ;
  • 박호식 (분리막연구센터 화학소재연구본부 한국화학연구원) ;
  • 남승은 (분리막연구센터 화학소재연구본부 한국화학연구원) ;
  • 박유인 (분리막연구센터 화학소재연구본부 한국화학연구원) ;
  • 손은호 (계면재료화학공정연구센터 화학소재연구본부 한국화학연구원) ;
  • 김정 (분리막연구센터 화학소재연구본부 한국화학연구원)
  • Received : 2018.06.25
  • Accepted : 2018.06.29
  • Published : 2018.06.30

Abstract

In this work, the morphology of polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) membranes were systemically investigated using phase inversion technique, to target membrane contactor applications. As the presence of macrovoids degrade the mechanical integrity of the membranes and jeopardize the long-term stability of membrane contactor processes (e.g. wetting), a wide range of dope compositions and casting conditions was studied to eliminate the undesired macrovoids. The type of solvent had significant effect on the membrane morphology, and the observed morphology were correlated to the physical properties of the solvent and solvent-polymer interactions. In addition, to fabricate macrovoid-free structure, the effects of different coagulation temperatures, inclusion of additives, and addition of nonsolvents were investigated. Due to the slow crystallization rate of P(VDF-co-HFP) polymer, it was found that obtaining porous membrane without macrovoids is difficult using only nonsolvent-induced phase separation method (NIPS). However, combined other phase inversion methods such as evaporation-induced phase separation (EIPS) and vapor-induced phase separation (VIPS), the desired membrane morphology can be obtained without any macrovoids.

본 연구에서는 상전이법을 이용하여 P(VDF-co-HFP) 분리막의 구조를 조절하였다. Macrovoid 없는 구조를 얻기 위하여 다양한 조건에서 비용매유도상전이(NIPS) 공법으로 분리막을 제막하였으나 고분자의 낮은 결정화 속도로 인해 macrovoid가 생성된다는 것을 관측하였다. 이를 극복하기 위해 증발유도상전이법(EIPS)과 증기유도상전이법(VIPS)을 도입하였으며 NIPS공법과 함께 제막되었을 때 이상적인 구조를 얻을 수 있다는 것을 확인하였다.

Keywords

References

  1. S. Loeb and S. Sourirajan, "Sea water demineralization by means of an osmotic membrane", Advances in Chemistry, 38, 117 (1963).
  2. J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti, E. Drioli, and Y. M. Lee, "Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods", J. Membr. Sci., 509, 94 (2016). https://doi.org/10.1016/j.memsci.2016.02.050
  3. J. H. Kim, S. H. park, M. J. Lee, S. M. Lee, W. H. Lee, K. H. Lee, N. R. Kang, H. J. Jo, J. F. Kim, E. Drioli, and Y. M. Lee, "Thermally rearranged polymer membranes for desalination", Energy & Environmental Science, 9, 878 (2016). https://doi.org/10.1039/C5EE03768A
  4. E. Drioli, G. Di Profio, and E. Curcio, "Progress in membrane crystallization", Current Opinion in Chemical Engineering, 1, 178 (2012). https://doi.org/10.1016/j.coche.2012.03.005
  5. J. F. Kim, A. Park, S. J. Kim, P. S. Lee, Y. H. Cho, H. S. Park, S. E. Nam, and Y. I. Park, "Harnessing clean water from power plant emissions using membrane condenser technology", ACS Sustainable Chemistry & Engineering, 6, 6425 (2018). https://doi.org/10.1021/acssuschemeng.8b00204
  6. A. Park, Y. M. Kim, J. F. Kim, P. S. Lee, Y. H. Cho, H. S. Park, S. E. Nam, and Y. I. Park, "Biogas upgrading using membrane contactor process: Pressure-cascaded stripping configuration", Separation and Purification Technology, 183, 358 (2017). https://doi.org/10.1016/j.seppur.2017.03.006
  7. F. Sufyan, T. Marino, H.F. Makki, Q.F. Alsalhy, S. Blefari, F. Macedonio, E. Di Nicolò, L. Giorno, E. Drioli, and A. Figoli, "Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation", Chemical Engineering and Processing: Process Intensification, 102, 16 (2016). https://doi.org/10.1016/j.cep.2016.01.007
  8. C. A. Smolders, A. J. Reuvers, R. M. Boom, and I. M. Wienk, "Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids", J. Membr. Sci., 73, 259 (1992). https://doi.org/10.1016/0376-7388(92)80134-6
  9. S. A. KcKelvey and W. J. Koros, "Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes", J. Membr. Sci., 112, 29 (1996). https://doi.org/10.1016/0376-7388(95)00197-2
  10. A. Bottino, G. Camera-Roda, G. Capannelli, and S. Munari, "The formation of microporous polyvinylidene difluoride membranes by phase separation", J. Membr. Sci., 57, 1 (1991). https://doi.org/10.1016/S0376-7388(00)81159-X
  11. N. Peng, T. S. Chung, and K. Y. Wang, "Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes", J. Membr. Sci., 318, 363 (2008). https://doi.org/10.1016/j.memsci.2008.02.063
  12. J. Ren, J. Zhou, and M. Deng, "Morphology transition of asymmetric polyetherimide flat sheet membranes with different thickness by wet phase-inversion process", Separation and Purification Technology, 74, 119 (2010). https://doi.org/10.1016/j.seppur.2010.05.014
  13. G. R. Guillen, G. Z. Ramon, H. P. Kavehpour, R. B. Kaner, and E. M. V. Hoek, "Direct microscopic observation of membrane formation by nonsolvent induced phase separation", J. Membr. Sci., 431, 212 (2013). https://doi.org/10.1016/j.memsci.2012.12.031
  14. A. Figoli, T. Marino, S. Simone, E. Di Nicolo, X.-M. Li, T. He, S. Tornaghi, and E. Drioli. "Towards non-toxic solvents for membrane preparation: A review", Green Chemistry, 16, 4034 (2014). https://doi.org/10.1039/C4GC00613E
  15. J. T. Jung, J. F. Kim, H. H. Wang, E. di Nicolo, E. Drioli, and Y. M Lee, "Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 514, 250 (2016). https://doi.org/10.1016/j.memsci.2016.04.069