DOI QR코드

DOI QR Code

엑셀/VBA를 이용한 배추 모형 제작

Development of a Chinese cabbage model using Microsoft Excel/VBA

  • 문경환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 송은영 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 위승환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소)
  • Moon, Kyung Hwan (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Song, Eun Young (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Wi, Seung Hwan (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Oh, Sooja (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • 투고 : 2018.05.31
  • 심사 : 2018.06.27
  • 발행 : 2018.06.30

초록

기후변화 영향평가를 위하여 프로세스 작물모형이 많이 이용되고 있지만, FORTRAN, C++, Delphi, Java와 같은 컴퓨터 프로그래밍 언어로 만들어지기 때문에 농학자들이 작물 모형을 제작하는 것이 쉽지 않다. 배추 모형을 개발하기 위해 6 가지 온도 체계를 가진 토양-식물-대기 연구(SPAR) 실험 자료가 사용되었다. SPAR 챔버에서의 식물 재배 기간 동안 잎의 수, 잎의 면적, 식물의 생장률을 6 회 측정 하였다. 또한 휴대용 LI-6400 광합성 측정기를 이용하여 잎의 광합성을 측정 하였다. 잎 수준 광합성 예측은 Farquhar, von Caemmerer 및 Berry (FvCB) 모형을 적용 하였고, 수관의 광합성은 Sun/Shade 모형이 사용되었다. 이러한 전 과정은 BuildIt 이라는 Excel 추가기능이 포함된 엑셀 파일로 제작되었다. 개발된 모형으로 시간 단위의 기상 입력 자료를 사용하여 배추의 광합성, 생장률 및 기타 생리 변수의 변화를 모의할 수 있었으며, 측정된 배추의 건조 중량의 변화와 모형에서 예측된 동화량과는 비례적인 관계를 나타내었으나, 온도에 따라서 다르게 나타났다.

Process-based crop models have been used to assess the impact of climate change on crop production. These models are implemented in procedural or object oriented computer programming languages including FORTRAN, C++, Delphi, Java, which have a stiff learning curve. The requirement for a high level of computer programming is one of barriers for efforts to develop and improve crop models based on biophysical process. In this study, we attempted to develop a Chinese cabbage model using Microsoft Excel with Visual Basic for Application (VBA), which would be easy enough for most agricultural scientists to develop a simple model for crop growth simulation. Results from Soil-Plant-Atmosphere-Research (SPAR) experiments under six temperature conditions were used to determine parameters of the Chinese cabbage model. During a plant growing season in SPAR chambers, numbers of leaves, leaf areas, growth rate of plants were measured six times. Leaf photosynthesis was also measured using LI-6400 Potable Photosynthesis System. Farquhar, von Caemmerer, and Berry (FvCB) model was used to simulate a leaf-level photosynthesis process. A sun/shade model was used to scale up to canopy-level photosynthesis. An Excel add-in, which is a small VBA program to assist crop modeling, was used to implement a Chinese cabbage model under the environment of Excel organizing all of equations into a single set of crop model. The model was able to simulate hourly changes in photosynthesis, growth rate, and other physiological variables using meteorological input data. Estimates and measurements of dry weight obtained from six SPAR chambers were linearly related ($R^2=0.985$). This result indicated that the Excel/VBA can be widely used for many crop scientists to develop crop models.

키워드

참고문헌

  1. Baier, W., 1973: Crop-weather analysis model: review and model development. Journal of applied Meteorology 12, 937-947. https://doi.org/10.1175/1520-0450(1973)012<0937:CWAMRA>2.0.CO;2
  2. Bouman, B., H. van Keulen, H. van Laar, and R. Rabbinge, 1996: The 'School of de Wit' crop growth simulation models: a pedigree and historical overview. Agricultural systems 52, 171-198. https://doi.org/10.1016/0308-521X(96)00011-X
  3. Dubois, J. J., E. L. Fiscus, F. L. Booker, M. D. Flowers, and C. D. Reid, 2007: Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New Phytologist 176, 402-414. https://doi.org/10.1111/j.1469-8137.2007.02182.x
  4. Farquhar, G. D., S. v. Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90. https://doi.org/10.1007/BF00386231
  5. Kim, S.-M., H.-J. Choi, H.-Y. Kim, D.-K. Lee, T.-H. Kim, M.-S. Ahn, and J.-H. Hur, 2002: Survey on pesticide use by chinese cabbage growers in gangwon alpine farmland. Korean Journal of Pesticide Science 6, 250-256.
  6. Kim, S. H., and J. H. Lieth, 2003: A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Annals of Botany 91, 771-781. https://doi.org/10.1093/aob/mcg080
  7. Long, S. P., and C. J. Bernacchi, 2003: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of experimental botany 54, 2393-2401.
  8. de Pury, D. G. G., and G. D. Farquhar, 1997: Simple scaling of photosynthesis from leaves to canopies without the errors of big‐leaf models. Plant, Cell & Environment 20, 537-557. https://doi.org/10.1111/j.1365-3040.1997.00094.x
  9. Sharkey, T. D., C. J. Bernacchi, G. D. Farquhar, and E. L. Singsaas, 2007: Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment 30, 1035-1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x
  10. Teh, C. B. S., 2011: Overcoming Microsoft Excel's weaknesses for crop model building and simulations. Journal of Natural Resources & Life Sciences Education 40, 122-136. https://doi.org/10.4195/jnrlse.2010.0024