DOI QR코드

DOI QR Code

유선형 스텝 선형을 적용한 35 knot급 고속활주선의 성능평가에 대한 고찰

A Review on the Performance Test of a High-Speed Planing Hull with 35 knot Speed by Appling the Streamlined Step of Hull Form

  • 문병영 (군산대학교 조선공학과) ;
  • 고호남 ((주)군장조선 기술연구소) ;
  • 이기열 (군산대학교 조선해양전문인력양성사업단)
  • Moon, Byung Young (Department of Naval Architecture, Kunsan National University) ;
  • Go, Ho Nam (Research and Development Institute, KunJang Shipbuilding Co., Ltd.) ;
  • Lee, Ki Yeol (Shipbuilding & Ocean Technical Manpower Agency, Kunsan National University)
  • 투고 : 2018.01.05
  • 심사 : 2018.04.25
  • 발행 : 2018.06.30

초록

고속 주행시 마찰저항을 감소시키기 위해 선체의 선저부분의 모양을 변화시키는 등 최근 관련 분야의 개발이 이루어지고 있는 바, 본 개발에서는 기하학적으로 고속활주선의 스텝 단면을 유선형(streamlined type) 구조로 제작해 침수 표면적에 의한 마찰저항의 최소화를 목적으로 준비하였다, 본 개발의 목적은 어업의 각종 위급상황 및 안전성을 고려한 고속활주선의 구조설계를 기반으로 하여 어업의 특수성 및 작업특성(어군 추적 및 어획물 출하)을 고려한 최적선형으로서 유선형 마찰저감형 고속활주선을 제작하는데 그 목표가 있으며, 이 과정에서 제작된 성과물에 대한 성능평가를 수행하여 정량적 목표치를 확보하고자 함에 본 기술개발 논문의 소개 배경이 있다.

As a recent technical approach, a high-speed planing hull was tried to realize a friction reducing system by simultaneously actuating the triple streamlined step hull form in association with optimum speed of 35 knot planing for fishing boat. In this approach, the streamlined step hull form with triple structure of type was attached under the bottom of high-speed planing hull, while a friction resistance is reduced in the process of running at the speed of 35 knot. In addition, this research was to make a performance test as to the manufactured product and acquire the purposed values and the development items. Actually, after manufacturing the desired prototype of high-speed planing hull, the significant items, fuel efficiency (second) and amount of fuel consumption (degree) including maximum speed (knot) were estimated for a performance test. And tensile strength (MPa) and bend strength (MPa) as to the completed prototype like a high speed planing hull were also acquired during the test.

키워드

참고문헌

  1. Hwang, A.R., Joo, Y.S. and Yoo, H.S. (2013). Principles of Offshore Plant and Equipment. GS Intervision, Korea.
  2. Lee, C.S., Seo, J.C., Hyun, B.S., Kim, M.C., Seo, S.B. and Moon, I.S. (2007). Ship Propulsion and Propeller Design. Moon Woon Dang, Korea.
  3. Lee, S.J. (1999). Fluid Dynamics from History. GS Intervision, Korea.
  4. Lee, S.G. (2012). Ship Calculation and Stability. GS Intervision, Korea.
  5. Lee, Y.K. (1995). Hull Form Development and CFD of High Speed Planing Hull. Journal of the SNAK, 32(5), 33-35.
  6. Newman, J.N. (1997). Marine Hydrodynamics. The MIT Press, Cambridge, MA, USA.
  7. Niwa, S. (2002). Engineering of High Speed Boat. A Foundation of Ship and Ocean, Japan.
  8. Shin, C.I. (2014). Shipbuilding Geometry. Dong Myung Sa, Korea.
  9. The Society of Naval Architects of Korea (2009). Resistance and Propulsion of Ship. Ji Sung Sa, Korea.
  10. The Society of Naval Architects of Korea (2012). Introduction to Naval Architecture and Ocean Engineering. GS Intervision, Korea.
  11. Yoon, G.H., Oh, S.J., Jung, J.A., Lee, H.G., Bae, B.D., Kim, J.S., Lee, Y.S., Park, Y.S., Lee, S.D., Lee, S.I., Jung, E.S. and Lee, J.W. (2009). Ship Fundamental Safety. Sang Hak Dang, Korea.