DOI QR코드

DOI QR Code

성층권 극소용돌이 강화사례에 대한 GloSea5의 예측성 진단

Prediction Skill of GloSea5 model for Stratospheric Polar Vortex Intensification Events

  • 김혜라 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부) ;
  • 송강현 (서울대학교 지구환경과학부) ;
  • 김상욱 (서울대학교 지구환경과학부) ;
  • 강현석 (국립기상과학원 지구시스템연구과) ;
  • 현유경 (국립기상과학원 지구시스템연구과)
  • Kim, Hera (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Song, Kanghyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Sang-Wook (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kang, Hyun-Suk (Earth System Research Division, National Institute of Meteorological Science) ;
  • Hyun, Yu-Kyung (Earth System Research Division, National Institute of Meteorological Science)
  • 투고 : 2018.03.12
  • 심사 : 2018.06.25
  • 발행 : 2018.06.30

초록

본 연구에서는 한국기상청의 장기예측시스템 현업모형인 GloSea5의 성층권 극소용돌이 강화사례에 대한 예측성을 진단 및 검증하였다. 진단에 사용된 통계량은 이상상관계수(ACC, Anomaly Correlation Coefficient)와 평균제곱근 예측성(MSSS, Mean Squared Skill Score)으로, 1991-2010년간 발생한 14개 극소용돌이 강화사례에 대한 GloSea5의 예측성한계는 ACC를 기준으로 13.6일, MSSS를 기준으로 18.5일로 나타났다. 모형의 평균제곱오차(MSE, Mean Squared Error)의 각 성분을 정량적으로 비교분석한 결과, 예측성을 저하시키는 가장 큰 요인은 맴돌이(에디)오차로, 그 중 에디의 위상오차가 전체 예측오차의 큰 부분을 차지하는 것으로 나타났다. 또한 극소용돌이 현상이 수평적으로 큰 규모를 가지는 만큼 동서파수 1의 에디와 관련한 오차가 더 작은 규모의 에디에 비해 가장 크게 예측오차에 기여하는 것으로 나타났다. 한편, 분석한 사례들에 대하여 GloSea5의 대류권 순환에 대한 예측성은 성층권 예측성과는 큰 관련이 없는 것으로 나타났다. 이는 단순히 GloSea5 모형이 성층권-대류권 접합과정을 잘 모의하지 못하기 때문에 나타난 결과로 유추할 수 있다. 하지만, 극소용돌이 강화에 의한 영향에 비해 대류권에서 내부변동성의 절대적인 크기가 종종 크게 나타난다는 점을 감안하면, 모형에서 성층권-대류권 접합을 잘 모의하고 있더라도 극소용돌이 강화 자체만의 영향이 뚜렷하게 나타나지 않았을 가능성 또한 간과하면 안 될 것이다.

This study evaluates the prediction skills of stratospheric polar vortex intensification events (VIEs) in Global Seasonal Forecasting System (GloSea5) model, an operational subseasonal-to-seasonal (S2S) prediction model of Korea Meteorological Administration (KMA). The results show that the prediction limits of VIEs, diagnosed with anomaly correlation coefficient (ACC) and mean squared skill score (MSSS), are 13.6 days and 18.5 days, respectively. These prediction limits are mainly determined by the eddy error, especially the large-scale eddy phase error from the eddies with the zonal wavenumber 1. This might imply that better prediction skills for VIEs can be obtained by improving the model performance in simulating the phase of planetary scale eddy. The stratospheric prediction skills, on the other hand, tend to not affect the tropospheric prediction skills in the analyzed cases. This result may indicate that stratosphere-troposphere dynamic coupling associated with VIEs might not be well predicted by GloSea5 model. However, it is possible that the coupling process, even if well predicted by the model, cannot be recognized by monotonic analyses, because intrinsic modes in the troposphere often have larger variability compared to the stratospheric impact.

키워드

참고문헌

  1. Baldwin, M.P. and Dunkerton, T.J., 1999, Propagation of the Arctic Oscillation from the stratosphere to the troposphere. Journal of Geophysical Research: Atmospheres, 104, 30937-30946. https://doi.org/10.1029/1999JD900445
  2. Baldwin, M.P., and Dunkerton, T.J., 2001, Stratospheric harbingers of anomalous weather regimes. Science, 244, 581-584.
  3. Baldwin, M.P. Stephenson, D.B., Thompson, D.W., Dunkerton, T.J., Charlton, A.J., and O'Neill, A., 2003, Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636-640. https://doi.org/10.1126/science.1087143
  4. Goddard, L. and Coauthors, 2013, A verification framework for interannual-to-decadal predictions experiments. Climate Dynamics, 40, 245-272. https://doi.org/10.1007/s00382-012-1481-2
  5. Goddard, L., Mason, S.J., Zebiak, S.E., Ropelewski, C.F., Basher, R., and Cane, M.A., 2001, Current approaches to seasonal-to-interannual climate predictions. International Journal of Climatology, 21, 1111-1152. https://doi.org/10.1002/joc.636
  6. Hudson, D., Alves, O., Hendon, H.H., and Marshall, A.G., 2011, Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia. Quarterly Journal of the Royal Meteorological Society, 137, 673-689. https://doi.org/10.1002/qj.769
  7. Jeong, J.-H., Park, T.-W., Choi, J.-H., Son, S.-W., Song, K., Kug, J.-S., Kim, B.-M., Kim, H.-K., Yim, S.-Y., 2016, Assessment of Climate Variability over East Asia-Korea for 2015/16 Winter. Atmosphere, Korean Meteorological Society, Vol. 26, No. 2, 337-345. https://doi.org/10.14191/Atmos.2016.26.2.337
  8. Jung, T. and Barkmeijer, J., 2006, Sensitivity of the tropospheric circulation to changes in the strength of the stratospheric polar vortex. Monthly Weather Review, 134, 2191-2207. https://doi.org/10.1175/MWR3178.1
  9. Kim, S.-W., Kim, H., Song, K., Son, S.-W., Lim, Y., Kang, H.-S., Hyun, Y.-K., 2018, Subseasonal-to-seasonal (S2S) prediction skill of GloSea5 model : Part 1. Geopotential height in the Northern Hemisphere extratropics. Atmosphere, Korean Meteorological Society, In revision (in Korean)
  10. Kodera, K., Yamazaki, K., Chiba, M., and Shibata, K., 1990, Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere. Geophysical Research Letter, 17, 1263-1266. https://doi.org/10.1029/GL017i009p01263
  11. Kodera, K., Koide, H., and Yoshimura, H., 1999, Northern Hemisphere winter circulation associated with the North Atlantic Oscillation and stratospheric polar-night jet. Geophysical Research Letter, 26, 443-446. https://doi.org/10.1029/1999GL900016
  12. Limpasuvan, V., Hartmann, D.L., Thompson, D.W.J., Jeev, K., and Yung, Y.L., 2005, Stratosphere-troposphere evolution during polar vortex intensification, Journal of Geophysical Research, 110, D24101, doi:10.1029/2005JD006302.
  13. MacLachlan, C, and Coauthors, 2015, Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quarterly Journal of Royal Meteorological Society, 141, 1072-1084. https://doi.org/10.1002/qj.2396
  14. Martineau, P. and Son, S.-W., 2010, Quality of reanalysis data during stratospheric vortex weakening and intensification events. Geophysical Research Letter, 37, L22801.
  15. Martineau, P. and Son, S.-W., 2015, Onset of circulation anomalies during stratospheric vortex weakening events: rhe role of planetary-scale waves. Journal of Climate, 28, 7347-7370 https://doi.org/10.1175/JCLI-D-14-00478.1
  16. Polvani, L.M. and Kushner, P.J. 2002, Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophysical Research Letter, 29(7), 1114, doi:10.1029/2001GL014284.
  17. Song, K., Kim, H., Son, S.-W., Kim, S.-W., Kang, H.-S., Hyun, Y.-K., 2018, Subseasonal-to-seasonal (S2S) prediction of GloSea5 model: Part 2. sudden stratospheric warming. Atmosphere, Korean Meteorological Society, Accepted. (in Korean)
  18. Song, K., Son, S.-W., and Woo, S.-H. 2015, Impact of sudden stratospheric warming on the surface air temperature in East Asia. Atmosphere, Korean Meteorological Society, Vol. 26, No. 3, 461-472. (in Korean) https://doi.org/10.14191/Atmos.2016.26.3.461
  19. Song, Y. and Robinson, W.A. 2004, Dynamical mechanisms for stratospheric influences on the troposphere. Journal of the Atmospheeric Science, 61, 1711-1725. https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2
  20. Stan, C. and Straus, D.M., 2009, Stratospheric predictability and sudden stratospheric warming events. Journal of Geophysical Research, 114, D12, 103.
  21. Thompson, D.W., Baldwin, M.P., and Wallace, J.M. 2002, Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. Journal of Climate, 15, 1421-1428. https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2
  22. Tripathi, O.P., Charlton-Perez, A., Sigmond, M., and Vitart, F., 2015, Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environmental Research Letter, 10, 104007. doi:10.1088/1748-9326/10/10/104007.