References
- Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, et al. 2009. Antigenic and genetic characteristics of swineorigin 2009 A (H1N1) influenza viruses circulating in humans. Science 325: 197-201. https://doi.org/10.1126/science.1176225
- Saito T, Nakaya Y, Suzuki T, Ito R, Saito T, Saito H, et al. 2004. Antigenic alteration of influenza B virus associated with loss of a glycosylation site due to host-cell adaptation. J. Med. Virol. 74: 336-343. https://doi.org/10.1002/jmv.20178
- Grohskopf LA, Olson SJ, Sokolow LZ, Bresee JS, Cox N, Broder KR, et al. 2016. Prevention and control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices (ACIP)-United States, 2016-17 influenza season. MMWR Recomm. Rep. 65: 1-54.
- Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng P-Y, et al. 2012. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis. 12: 687-695. https://doi.org/10.1016/S1473-3099(12)70121-4
- Larson RC, Teytelman A. 2012. Modeling the effects of H1N1 influenza vaccine distribution in the United States. Value Health 15: 158-166. https://doi.org/10.1016/j.jval.2011.07.014
- Lee M-S, Hu AY-C. 2012. A cell-based backup to speed up pandemic influenza vaccine production. Trends Microbiol. 20: 103-105. https://doi.org/10.1016/j.tim.2011.12.002
- Gaush CR, Smith TF. 1968. Replication and plaque assay of influenza virus in an established line of canine kidney cells. J. Appl. Microbiol. 16: 588-594. https://doi.org/10.1128/AEM.16.4.588-594.1968
- Govorkova E, Matrosovich M, Tuzikov A, Bovin N, Gerdil C, Fanget B, et al. 1999. Selection of receptor-binding variants of human influenza A and B viruses in baby hamster kidney cells. Virology 262: 31-38. https://doi.org/10.1006/viro.1999.9892
- Audsley JM, Tannock GA. 2008. Cell-based influenza vaccines. Drugs 68: 1483-1491. https://doi.org/10.2165/00003495-200868110-00002
- Genzel Y, Reichl U. 2009. Continuous cell lines as a production system for influenza vaccines. Expert Rev. Vaccines 8: 1681-1692. https://doi.org/10.1586/erv.09.128
- Ulmer JB, Valley U, Rappuoli R. 2006. Vaccine manufacturing: challenges and solutions. Nat. Biotechnol. 24: 1377-1383. https://doi.org/10.1038/nbt1261
- Doroshenko A, Halperin SA. 2009. Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). Expert Rev. Vaccines 8: 679-688. https://doi.org/10.1586/erv.09.31
- Song JY, Cheong HJ, Lee J, Woo HJ, Wie S-H, Lee J-S, et al. 2015. Immunogenicity and safety of a cell culture-derived inactivated trivalent influenza vaccine (NBP607): a randomized, double-blind, multi-center, phase 3 clinical trial. Vaccine 33: 5437-5444. https://doi.org/10.1016/j.vaccine.2015.08.030
- HSA. 2014. Understanding vaccines, vaccine development and production. Available from http://www.hsa.gov.sg/content/hsa/en/Health_Products_Regulation/Consumer_Information/Public_Advisories/Influenza_A_H1N1_information/H1N1_Vaccines/understanding-vaccines--vaccine-developmentand-production.html. Accessed Sep. 24, 2012.
- Shin D, Park KJ, Lee H, Cho EY, Kim MS, Hwang MH, et al. 2015. Comparison of immunogenicity of cell- and egg-passaged viruses for manufacturing MDCK cell culture-based influenza vaccines. Virus Res. 204: 40-46. https://doi.org/10.1016/j.virusres.2015.04.005
- Song M-S, Baek YH, Pascua PNQ, Kwon H-I, Park S-J, Kim E-H, et al. 2013. Establishment of Vero cell RN A polymerase I-driven reverse genetics for influenza A virus and its application for pandemic (H1N1) 2009 influenza virus vaccine production. J. Gen. Virol. 94: 1230-1235.
- Song M-S, Pascua PNQ, Lee JH, Baek YH, Lee O-J, Kim C-J, et al. 2009. The polymerase acidic protein gene of influenza A virus contributes to pathogenicity in a mouse model. J. Virol. 83: 12325-12335. https://doi.org/10.1128/JVI.01373-09
- Lohr V, Genzel Y, Behrendt I, Scharfenberg K, Reichl U. 2010. A new MDCK suspension line cultivated in a fully defined medium in stirred-tank and wave bioreactor. Vaccine 28: 6256-6264. https://doi.org/10.1016/j.vaccine.2010.07.004
- Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 27: 493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408
- Rocha EP, Xu X, Hall HE, Allen JR, Regnery HL, Cox NJ. 1993. Comparison of 10 influenza A (H1N1 and H3N2) haemagglutinin sequences obtained directly from clinical specimens to those of MDCK cell- and egg-grown viruses. J. Gen. Virol. 74: 2513-2518. https://doi.org/10.1099/0022-1317-74-11-2513
- Schild G, Oxford J, De Jong J, Webster R. 1983. Evidence for host-cell selection of influenza virus antigenic variants. Nature 303: 706-709. https://doi.org/10.1038/303706a0
- Dumitrescu M, Grobnicu M, Zilisteanu E, Alexandrescu V. 1981. A three years experience in using MDCK cell line for influenza virus isolation (1979-1981). Arch. Roum. Pathol. Exp. Microbiol. 40: 313.
- Gambaryan AS, Karasin AI, Tuzikov AB, Chinarev AA, Pazynina GV, Bovin NV, et al. 2005. Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res. 114: 15-22. https://doi.org/10.1016/j.virusres.2005.05.005
- Stevens J, Chen L-M, Carney PJ, Garten R, Foust A, Le J, et al. 2010. Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs. J. Virol. 84: 8287-8299. https://doi.org/10.1128/JVI.00058-10
- Pradesh A. 2012. Novartis receives FDA approval for Flucelvax, the first cell-culture vaccine in US to help protect against seasonal influenza. Available from http://www.andhranews.net/Business/2012/Novartis-receives-FDA-approval-Flucelvax-first-53291.htm. Accessed Nov. 20, 2012.
- Tanzi MG. 2013. Flucelvax: first seasonal vaccine using cellculture technology. Pharm. Today 19: 31. https://doi.org/10.1016/S1042-0991(15)31561-9
- Ping J, Lopes TJ, Nidom CA, Ghedin E, Macken CA, Fitch A, et al. 2015. Development of high-yield influenza A virus vaccine viruses. Nat. Commun. 2: 8148.
- Hale BG, Randall RE, Ortín J, Jackson D. 2008. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89: 2359-2376. https://doi.org/10.1099/vir.0.2008/004606-0
- Watanabe T, Imai M, Kawaoka Y. 2017. NS1 is the fluid for "flu-transmission". Proc. Natl. Acad. Sci. USA 2017 114: 11012-11014. https://doi.org/10.1073/pnas.1715239114
- Genzel Y, Olmer R, Schafer B, Reichl U. 2006. Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media. Vaccine 24: 6074-6087. https://doi.org/10.1016/j.vaccine.2006.05.023
- Hu AYC, Weng TC, Tseng YF, Chen YS, Wu CH, Hsiao S, et al. 2008. Microcarrier-based MDCK cell culture system for the production of influenza H5N1 vaccines. Vaccine 26: 5736-5740. https://doi.org/10.1016/j.vaccine.2008.08.015
- Merten O, Manuguerra J, Hannoun C. 1999. Production of influenza virus in serum-free mammalian cell cultures. Dev. Biol. Stand. 98: 73-24.
- Tree JA, Richardson C, Fooks AR, Clegg JC, Looby D. 2001. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine 19: 3444-3450. https://doi.org/10.1016/S0264-410X(01)00053-6
- Hannoun C. 2013. The evolving history of influenza viruses and influenza vaccines. Expert Rev. Vaccines 12: 1085-1094. https://doi.org/10.1586/14760584.2013.824709
- Keitel W, Groth N, Lattanzi M, Praus M, Hilbert AK, Borkowski A, et al. 2010. Dose ranging of adjuvant and antigen in a cell culture H5N1 influenza vaccine: safety and immunogenicity of a phase 1/2 clinical trial. Vaccine 28: 840-848. https://doi.org/10.1016/j.vaccine.2009.10.019
- Qiao C, Tian G, Jiang Y, Li Y, Shi J, Yu K, et al. 2006. Vaccines developed for H5 highly pathogenic avian influenza in China. Ann. N.Y. Acad. Sci. 1081: 182-192. https://doi.org/10.1196/annals.1373.022
- Shi H, Liu XF, Zhang X, Chen S, Sun L, Lu J. 2007. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses. Vaccine 25: 7379-7384. https://doi.org/10.1016/j.vaccine.2007.08.011
- Roy P, Noad R. 2009. Virus-like particles as a vaccine delivery system: myths and facts. Adv. Exp. Med. Biol. 655: 145158.
- Murakami S, Horimoto T, Yamada S, Kakugawa S, Goto H, Kawaoka Y. 2008. Establishment of canine RNA polymerase I-driven reverse genetics for influenza A virus: its application for H5N1 vaccine production. J. Virol. 82: 1605-1609. https://doi.org/10.1128/JVI.01876-07
- Gabriel G, Abram M, Keiner B, Wagner R, Klenk H-D, Stech J. 2007. Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J. Virol. 81: 9601-9604. https://doi.org/10.1128/JVI.00666-07
Cited by
- Orchestrated efforts on host network hijacking: Processes governing virus replication vol.11, pp.1, 2018, https://doi.org/10.1080/21505594.2020.1726594
- Truncation or Deglycosylation of the Neuraminidase Stalk Enhances the Pathogenicity of the H5N1 Subtype Avian Influenza Virus in Mallard Ducks vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.583588
- Development of high-growth influenza H7N9 prepandemic candidate vaccine viruses in suspension MDCK cells vol.27, pp.1, 2018, https://doi.org/10.1186/s12929-020-00645-y
- Establishment of a genetically engineered chicken DF-1 cell line for efficient amplification of influenza viruses in the absence of trypsin vol.21, pp.1, 2018, https://doi.org/10.1186/s12896-020-00663-6