참고문헌
- Garrood WT, Zimmer CT, Gorman KJ, Nauen R, Bass C, Davies TG. 2015. Field-evolved resistance to imidacloprid and ethiprole in populations of brown planthopper Nilaparvata lugens collected from across South and East Asia. Pest Manag. Sci. 72: 140-149.
- Min S, Lee SW, Choi BR, Lee SH, Kwon DH. 2014. Insecticide resistance monitoring and correlation analysis to select appropriate insecticides against Nilaparvata lugens (Stal), a migratory pest in Korea. J. Asia Pac. Entomol. 17: 711-716. https://doi.org/10.1016/j.aspen.2014.07.005
- Puinean AM, Denholm I, Millar NS, Nauen R, Williamson MS. 2010. Characterisation of imidacloprid resistance mechanisms in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pest Biochem. Physiol. 97: 129-132. https://doi.org/10.1016/j.pestbp.2009.06.008
- Hemingway J, Karunaratne SH. 1998. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med. Vet. Entomol. 12: 1-12. https://doi.org/10.1046/j.1365-2915.1998.00082.x
- Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. 2012. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 109: 8618-8622. https://doi.org/10.1073/pnas.1200231109
- Xia X, Zheng D, Zhong H, Qin B, Gurr GM, Vasseur L, et al. 2013. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS One 8: e68852. https://doi.org/10.1371/journal.pone.0068852
- Kikuchi Y. 2009. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ. 24: 195-204. https://doi.org/10.1264/jsme2.ME09140S
- Engel P, Moran NA. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37: 699-735. https://doi.org/10.1111/1574-6976.12025
- Jones RT, Bressan A, Greenwell AM, Fierer N. 2011. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian islands. Appl. Environ. Microbiol. 77: 8345-8349. https://doi.org/10.1128/AEM.05974-11
- Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565. https://doi.org/10.1038/nature06269
- Lin XL, Pan QJ, Tian HG, Douglas AE, Liu TX. 2015. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods. Insect Sci. 22: 375-385. https://doi.org/10.1111/1744-7917.12079
- Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. 2017. Gut symbiont enhances insecticide resistance in a significant pest, the orient fruit fly Bactrocera dorsalis (Hendel). Microbiome 5: 13. https://doi.org/10.1186/s40168-017-0236-z
- Almeida LG, Moraes LA, Trigo JR, Omoto C, Consoli FL. 2017. The gut microbiota of insecticide-resistant insects houses insecticide degrading bacteria: a potential source for biotechnological exploitation. PLoS One 12: e0174754. https://doi.org/10.1371/journal.pone.0174754
- Gayatri Priya N, Ojha A, Kajla MK, Raj A, Rajagopal R. 2012. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One 7: e30768. https://doi.org/10.1371/journal.pone.0030768
- Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P. 2014. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol. 14: 136. https://doi.org/10.1186/1471-2180-14-136
- Tang M, Lv L, Jing SL, Zhu LL, He GC. 2010. Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl. Environ. Microbiol. 76: 1740-1745. https://doi.org/10.1128/AEM.02240-09
- Wang A, Yao Z, Zheng W, Zhang H. 2014. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS One 9: e106988. https://doi.org/10.1371/journal.pone.0106988
- Malathi VM, Jalali SK, Sidde Gowda DK, Mohan M, Venkatesan T. 2015. Establishing the role of detoxifying enzymes in field-evolved resistance to various insecticides in the brown planthopper, Nilaparvata lugens in South India. Insect. Sci. 24: 35-46.
- Kim YJ, Lee YJ, Kim GH, Lee SW, Ahn YJ. 1999. Toxicity of tebufenpyrad to Tetranychus urticae (Acari: Tetranychidae) and Amblyseius womersleyi (Acari: Phytoseiidae) under laboratory and field conditions. J. Econ. Entomol. 92: 187-192. https://doi.org/10.1093/jee/92.1.187
- Bartam AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Nuefeld JD. 2011. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Environ. Microbiol. 77: 3846-3852. https://doi.org/10.1128/AEM.02772-10
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
- Parks DH, Tyson GW, Hugenholtz P, Beiko RG. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30: 3123-3124. https://doi.org/10.1093/bioinformatics/btu494
- Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, et al. 2012. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40: W88-W95. https://doi.org/10.1093/nar/gks497
- Metsalu T, Vilo J. 2015. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43: W566-W570. https://doi.org/10.1093/nar/gkv468
- Wang Y, Naumann U, Wright ST, Warton DI. 2012. Mvabund - an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3: 471-474. https://doi.org/10.1111/j.2041-210X.2012.00190.x
- Team RC. 2014. R: a language and environment for statistical computing [Internet]. R Foundation for Statistical Computing, Vienna, Austria.
- Xu HX, Zheng XS, Yang YJ, Wang X, Ye GY, Lu ZX. 2014. Bacterial community in different populations of rice brown planthopper, Nilaparvata lugens (Stal). Rice Sci. 21: 59-64. https://doi.org/10.1016/S1672-6308(13)60166-3
- Zhang J, Zhang Y, Li J, Liu M, Liu Z. 2016. Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: digestion, detoxification and oxidative stress response. PLoS One 1: e0155254.
- Boucias DG, Cai Y, Sun Y, Lietze V-U, Sen R, Raychoudhury R, et al. 2013. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol. Ecol. 22: 1836-1853. https://doi.org/10.1111/mec.12230
- Chandler JA, Morgan Lang J, Bhatnagar S, Eisen JA, Kopp A. 2011. Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet. 7: e1002272. https://doi.org/10.1371/journal.pgen.1002272
- Kautz S, Rubin BER, Moreau CS. 2013. Bacterial infections across the ants: frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche (Camb. Mass.) 2013: 936341.
- Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S, Park D-S, et al. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80: 5254-5264. https://doi.org/10.1128/AEM.01226-14
- Segata N, Baldini F, Pompon J, Garrett WS, Truong DT, Dabire RK, et al. 2016. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender and swarm-enriched microbial biomarkers. Sci. Rep. 6: 24207. https://doi.org/10.1038/srep24207
- Gao ZM, Xu X, Ruan LW. 2014. Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil. Appl. Microbiol. Biotechnol. 98: 465-474. https://doi.org/10.1007/s00253-013-4857-2
- Ramya SL, Venkatesan T, Srinivasa Murthy K, Jalali SK, Verghese A. 2015. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz. J. Microbiol. 47: 327-336.
- van Frankenhuyzen K, Liu Y, Tonon A. 2010. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. J. Invertebr. Pathol. 103: 124-131 https://doi.org/10.1016/j.jip.2009.12.008
- Chen B, The BS, Sun C, Hu S, Lu X, Boland W, et al. 2016. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 6: 29505. https://doi.org/10.1038/srep29505
- Tokuda G, Yamaoka I, Noda H. 2000. Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl. Environ. Microbiol. 66: 2199-2207. https://doi.org/10.1128/AEM.66.5.2199-2207.2000
- Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, et al. 2012. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS One 7: e36978. https://doi.org/10.1371/journal.pone.0036978
- Snyman M, Gupta AK, Bezuidenhout CC, Claassens S, van den Berg J. 2016. Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae). World J. Microbiol. Biotechnol 32: 115. https://doi.org/10.1007/s11274-016-2066-8
- Pemberton JM, Wynn EC. 1984. Genetic engineering and biological detoxification/degradation of insecticides, pp. 147-168. In Lal R (ed.), Insecticide Microbiology. Springer, Berlin.
- Qu LY, Lou YH, Fan HW, Ye YX, Huang HJ, Hu MQ, et al. 2013. Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens. Symbiosis 61: 47. https://doi.org/10.1007/s13199-013-0256-9
- Singh A, Singh DP, Tiwari R, Kumar K, Singh RV, Singh S, et al. 2015. Taxonomic and functional annotation of gut bacterial communities of Eisenia foetida and Perionyx excavatus. Microbiol. Res. 175: 48-56. https://doi.org/10.1016/j.micres.2015.03.003
- Douglas AE. 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60: 17-34. https://doi.org/10.1146/annurev-ento-010814-020822
- Dillon RJ, Dillon VM. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49: 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
- Droge S, Limper U, Emtiazi F, Schonig I, Pavlus N, Drzyzga O, et al. 2005. In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rosechafer Pachnoda marginata. J. Gen. Appl. Microbiol. 51: 57-64. https://doi.org/10.2323/jgam.51.57
- Morales-Jimenez J, Zuniga G, Villa-Tanaca L, Hernandez- Rodriguez C. 2009. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb. Ecol. 58: 879-891. https://doi.org/10.1007/s00248-009-9548-2
- Kohler T, Dietrich C, Scheffrahn RH, Brune A. 2012. Highresolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl. Environ. Microbiol. 78: 4691-4701. https://doi.org/10.1128/AEM.00683-12
- Indiragandhi P, Anandham R, Madhaiyan M, Kim GH, Sa TM. 2008. Cross utilization and expression of outer membrane receptor proteins for siderophores uptake by diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) gut bacteria. FEMS Microbiol. Lett. 287: 27-33.
- Singh B, Singh K. 2016. Bacillus: as bioremediator agent of major environmental pollutants, pp. 35-55. In Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds.). Bacilli and Agrobiotechnology. Springer, Berlin.
- Ramya SL, Venkatesan T, Srinivasa Murthy K, Jalali SK, Verghese A. 2016. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz. J. Microbiol. 47: 327-336. https://doi.org/10.1016/j.bjm.2016.01.012
- Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim GH, Saravanan VS, et al. 2007. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofossusceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism toward entomopathogenic fungi and host insect nutrition. J. Appl. Microbiol. 103: 2664-2675. https://doi.org/10.1111/j.1365-2672.2007.03506.x
- van den Bosch TJ, Welte CU. 2016. Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 10: 531-540.
피인용 문헌
- Analysis of the bacterial communities and endosymbionts of natural populations of Bemisia tabaci in several crop fields from Mexico semi-arid zone vol.69, pp.9, 2018, https://doi.org/10.1007/s13213-019-01483-6
- Microbiome responses during virulence adaptation by a phloem‐feeding insect to resistant near‐isogenic rice lines vol.9, pp.20, 2018, https://doi.org/10.1002/ece3.5699
- The Midgut Microbiota of Colombian Aedes aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-cyhalothrin vol.11, pp.9, 2018, https://doi.org/10.3390/insects11090584
- Antibiotic exposure perturbs the bacterial community in the small brown planthopper Laodelphax striatellus vol.27, pp.5, 2020, https://doi.org/10.1111/1744-7917.12675
- The gut bacterial flora associated with brown planthopper is affected by host rice varieties vol.203, pp.1, 2018, https://doi.org/10.1007/s00203-020-02013-8
- Antimicrobials Affect the Fat Body Microbiome and Increase the Brown Planthopper Mortality vol.12, pp.None, 2018, https://doi.org/10.3389/fphys.2021.644897
- High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments vol.31, pp.2, 2018, https://doi.org/10.4014/jmb.2011.11018
- Three antimicrobials alter gut microbial communities and causing different mortality of brown planthopper, Nilaparvata lugens Stål vol.174, pp.None, 2021, https://doi.org/10.1016/j.pestbp.2021.104806