DOI QR코드

DOI QR Code

Gut Bacterial Diversity of Insecticide-Susceptible and -Resistant Nymphs of the Brown Planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and Elucidation of Their Putative Functional Roles

  • Malathi, Vijayakumar M. (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources) ;
  • More, Ravi P. (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources) ;
  • Anandham, Rangasamy (Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University) ;
  • Gracy, Gandhi R. (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources) ;
  • Mohan, Muthugounder (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources) ;
  • Venkatesan, Thiruvengadam (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources) ;
  • Samaddar, Sandipan (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Jalali, Sushil Kumar (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources) ;
  • Sa, Tongmin (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • Received : 2017.11.22
  • Accepted : 2018.04.14
  • Published : 2018.06.28

Abstract

Knowledge about the gut bacterial communities associated with insects is essential to understand their roles in the physiology of the host. In the present study, the gut bacterial communities of a laboratory-reared insecticide-susceptible (IS), and a field-collected insecticide-resistant (IR) population of a major rice pest, the brown planthopper Nilaparvata lugens, were evaluated. The deep-sequencing analysis of the V3 hypervariable region of the 16S rRNA gene was performed using Illumina and the sequence data were processed using QIIME. The toxicological bioassays showed that compared with the IS population, IR population exhibited 7.9-, 6.7-, 14.8-, and 18.7-fold resistance to acephate, imidacloprid, thiamethoxam, and buprofezin, respectively. The analysis of the alpha diversity indicated a higher bacterial diversity and richness associated with the IR population. The dominant phylum in the IS population was Proteobacteria (99.86%), whereas the IR population consisted of Firmicutes (46.06%), followed by Bacteroidetes (30.8%) and Proteobacteria (15.49%). Morganella, Weissella, and Enterococcus were among the genera shared between the two populations and might form the core bacteria associated with N. lugens. The taxonomic-to-phenotypic mapping revealed the presence of ammonia oxidizers, nitrogen fixers, sulfur oxidizers and reducers, xylan degraders, and aromatic hydrocarbon degraders in the metagenome of N. lugens. Interestingly, the IR population was found to be enriched with bacteria involved in detoxification functions. The results obtained in this study provide a basis for future studies elucidating the roles of the gut bacteria in the insecticide resistance-associated symbiotic relationship and on the design of novel strategies for the management of N. lugens.

Keywords

References

  1. Garrood WT, Zimmer CT, Gorman KJ, Nauen R, Bass C, Davies TG. 2015. Field-evolved resistance to imidacloprid and ethiprole in populations of brown planthopper Nilaparvata lugens collected from across South and East Asia. Pest Manag. Sci. 72: 140-149.
  2. Min S, Lee SW, Choi BR, Lee SH, Kwon DH. 2014. Insecticide resistance monitoring and correlation analysis to select appropriate insecticides against Nilaparvata lugens (Stal), a migratory pest in Korea. J. Asia Pac. Entomol. 17: 711-716. https://doi.org/10.1016/j.aspen.2014.07.005
  3. Puinean AM, Denholm I, Millar NS, Nauen R, Williamson MS. 2010. Characterisation of imidacloprid resistance mechanisms in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pest Biochem. Physiol. 97: 129-132. https://doi.org/10.1016/j.pestbp.2009.06.008
  4. Hemingway J, Karunaratne SH. 1998. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med. Vet. Entomol. 12: 1-12. https://doi.org/10.1046/j.1365-2915.1998.00082.x
  5. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. 2012. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 109: 8618-8622. https://doi.org/10.1073/pnas.1200231109
  6. Xia X, Zheng D, Zhong H, Qin B, Gurr GM, Vasseur L, et al. 2013. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS One 8: e68852. https://doi.org/10.1371/journal.pone.0068852
  7. Kikuchi Y. 2009. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ. 24: 195-204. https://doi.org/10.1264/jsme2.ME09140S
  8. Engel P, Moran NA. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37: 699-735. https://doi.org/10.1111/1574-6976.12025
  9. Jones RT, Bressan A, Greenwell AM, Fierer N. 2011. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian islands. Appl. Environ. Microbiol. 77: 8345-8349. https://doi.org/10.1128/AEM.05974-11
  10. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565. https://doi.org/10.1038/nature06269
  11. Lin XL, Pan QJ, Tian HG, Douglas AE, Liu TX. 2015. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods. Insect Sci. 22: 375-385. https://doi.org/10.1111/1744-7917.12079
  12. Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. 2017. Gut symbiont enhances insecticide resistance in a significant pest, the orient fruit fly Bactrocera dorsalis (Hendel). Microbiome 5: 13. https://doi.org/10.1186/s40168-017-0236-z
  13. Almeida LG, Moraes LA, Trigo JR, Omoto C, Consoli FL. 2017. The gut microbiota of insecticide-resistant insects houses insecticide degrading bacteria: a potential source for biotechnological exploitation. PLoS One 12: e0174754. https://doi.org/10.1371/journal.pone.0174754
  14. Gayatri Priya N, Ojha A, Kajla MK, Raj A, Rajagopal R. 2012. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One 7: e30768. https://doi.org/10.1371/journal.pone.0030768
  15. Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P. 2014. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol. 14: 136. https://doi.org/10.1186/1471-2180-14-136
  16. Tang M, Lv L, Jing SL, Zhu LL, He GC. 2010. Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl. Environ. Microbiol. 76: 1740-1745. https://doi.org/10.1128/AEM.02240-09
  17. Wang A, Yao Z, Zheng W, Zhang H. 2014. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS One 9: e106988. https://doi.org/10.1371/journal.pone.0106988
  18. Malathi VM, Jalali SK, Sidde Gowda DK, Mohan M, Venkatesan T. 2015. Establishing the role of detoxifying enzymes in field-evolved resistance to various insecticides in the brown planthopper, Nilaparvata lugens in South India. Insect. Sci. 24: 35-46.
  19. Kim YJ, Lee YJ, Kim GH, Lee SW, Ahn YJ. 1999. Toxicity of tebufenpyrad to Tetranychus urticae (Acari: Tetranychidae) and Amblyseius womersleyi (Acari: Phytoseiidae) under laboratory and field conditions. J. Econ. Entomol. 92: 187-192. https://doi.org/10.1093/jee/92.1.187
  20. Bartam AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Nuefeld JD. 2011. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Environ. Microbiol. 77: 3846-3852. https://doi.org/10.1128/AEM.02772-10
  21. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  22. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30: 3123-3124. https://doi.org/10.1093/bioinformatics/btu494
  23. Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, et al. 2012. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40: W88-W95. https://doi.org/10.1093/nar/gks497
  24. Metsalu T, Vilo J. 2015. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43: W566-W570. https://doi.org/10.1093/nar/gkv468
  25. Wang Y, Naumann U, Wright ST, Warton DI. 2012. Mvabund - an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3: 471-474. https://doi.org/10.1111/j.2041-210X.2012.00190.x
  26. Team RC. 2014. R: a language and environment for statistical computing [Internet]. R Foundation for Statistical Computing, Vienna, Austria.
  27. Xu HX, Zheng XS, Yang YJ, Wang X, Ye GY, Lu ZX. 2014. Bacterial community in different populations of rice brown planthopper, Nilaparvata lugens (Stal). Rice Sci. 21: 59-64. https://doi.org/10.1016/S1672-6308(13)60166-3
  28. Zhang J, Zhang Y, Li J, Liu M, Liu Z. 2016. Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: digestion, detoxification and oxidative stress response. PLoS One 1: e0155254.
  29. Boucias DG, Cai Y, Sun Y, Lietze V-U, Sen R, Raychoudhury R, et al. 2013. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol. Ecol. 22: 1836-1853. https://doi.org/10.1111/mec.12230
  30. Chandler JA, Morgan Lang J, Bhatnagar S, Eisen JA, Kopp A. 2011. Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet. 7: e1002272. https://doi.org/10.1371/journal.pgen.1002272
  31. Kautz S, Rubin BER, Moreau CS. 2013. Bacterial infections across the ants: frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche (Camb. Mass.) 2013: 936341.
  32. Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S, Park D-S, et al. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80: 5254-5264. https://doi.org/10.1128/AEM.01226-14
  33. Segata N, Baldini F, Pompon J, Garrett WS, Truong DT, Dabire RK, et al. 2016. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender and swarm-enriched microbial biomarkers. Sci. Rep. 6: 24207. https://doi.org/10.1038/srep24207
  34. Gao ZM, Xu X, Ruan LW. 2014. Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil. Appl. Microbiol. Biotechnol. 98: 465-474. https://doi.org/10.1007/s00253-013-4857-2
  35. Ramya SL, Venkatesan T, Srinivasa Murthy K, Jalali SK, Verghese A. 2015. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz. J. Microbiol. 47: 327-336.
  36. van Frankenhuyzen K, Liu Y, Tonon A. 2010. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. J. Invertebr. Pathol. 103: 124-131 https://doi.org/10.1016/j.jip.2009.12.008
  37. Chen B, The BS, Sun C, Hu S, Lu X, Boland W, et al. 2016. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 6: 29505. https://doi.org/10.1038/srep29505
  38. Tokuda G, Yamaoka I, Noda H. 2000. Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl. Environ. Microbiol. 66: 2199-2207. https://doi.org/10.1128/AEM.66.5.2199-2207.2000
  39. Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, et al. 2012. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS One 7: e36978. https://doi.org/10.1371/journal.pone.0036978
  40. Snyman M, Gupta AK, Bezuidenhout CC, Claassens S, van den Berg J. 2016. Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae). World J. Microbiol. Biotechnol 32: 115. https://doi.org/10.1007/s11274-016-2066-8
  41. Pemberton JM, Wynn EC. 1984. Genetic engineering and biological detoxification/degradation of insecticides, pp. 147-168. In Lal R (ed.), Insecticide Microbiology. Springer, Berlin.
  42. Qu LY, Lou YH, Fan HW, Ye YX, Huang HJ, Hu MQ, et al. 2013. Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens. Symbiosis 61: 47. https://doi.org/10.1007/s13199-013-0256-9
  43. Singh A, Singh DP, Tiwari R, Kumar K, Singh RV, Singh S, et al. 2015. Taxonomic and functional annotation of gut bacterial communities of Eisenia foetida and Perionyx excavatus. Microbiol. Res. 175: 48-56. https://doi.org/10.1016/j.micres.2015.03.003
  44. Douglas AE. 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60: 17-34. https://doi.org/10.1146/annurev-ento-010814-020822
  45. Dillon RJ, Dillon VM. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49: 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
  46. Droge S, Limper U, Emtiazi F, Schonig I, Pavlus N, Drzyzga O, et al. 2005. In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rosechafer Pachnoda marginata. J. Gen. Appl. Microbiol. 51: 57-64. https://doi.org/10.2323/jgam.51.57
  47. Morales-Jimenez J, Zuniga G, Villa-Tanaca L, Hernandez- Rodriguez C. 2009. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb. Ecol. 58: 879-891. https://doi.org/10.1007/s00248-009-9548-2
  48. Kohler T, Dietrich C, Scheffrahn RH, Brune A. 2012. Highresolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl. Environ. Microbiol. 78: 4691-4701. https://doi.org/10.1128/AEM.00683-12
  49. Indiragandhi P, Anandham R, Madhaiyan M, Kim GH, Sa TM. 2008. Cross utilization and expression of outer membrane receptor proteins for siderophores uptake by diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) gut bacteria. FEMS Microbiol. Lett. 287: 27-33.
  50. Singh B, Singh K. 2016. Bacillus: as bioremediator agent of major environmental pollutants, pp. 35-55. In Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds.). Bacilli and Agrobiotechnology. Springer, Berlin.
  51. Ramya SL, Venkatesan T, Srinivasa Murthy K, Jalali SK, Verghese A. 2016. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz. J. Microbiol. 47: 327-336. https://doi.org/10.1016/j.bjm.2016.01.012
  52. Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim GH, Saravanan VS, et al. 2007. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofossusceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism toward entomopathogenic fungi and host insect nutrition. J. Appl. Microbiol. 103: 2664-2675. https://doi.org/10.1111/j.1365-2672.2007.03506.x
  53. van den Bosch TJ, Welte CU. 2016. Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 10: 531-540.

Cited by

  1. Analysis of the bacterial communities and endosymbionts of natural populations of Bemisia tabaci in several crop fields from Mexico semi-arid zone vol.69, pp.9, 2018, https://doi.org/10.1007/s13213-019-01483-6
  2. Microbiome responses during virulence adaptation by a phloem‐feeding insect to resistant near‐isogenic rice lines vol.9, pp.20, 2018, https://doi.org/10.1002/ece3.5699
  3. The Midgut Microbiota of Colombian Aedes aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-cyhalothrin vol.11, pp.9, 2018, https://doi.org/10.3390/insects11090584
  4. Antibiotic exposure perturbs the bacterial community in the small brown planthopper Laodelphax striatellus vol.27, pp.5, 2020, https://doi.org/10.1111/1744-7917.12675
  5. The gut bacterial flora associated with brown planthopper is affected by host rice varieties vol.203, pp.1, 2018, https://doi.org/10.1007/s00203-020-02013-8
  6. Antimicrobials Affect the Fat Body Microbiome and Increase the Brown Planthopper Mortality vol.12, pp.None, 2018, https://doi.org/10.3389/fphys.2021.644897
  7. High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments vol.31, pp.2, 2018, https://doi.org/10.4014/jmb.2011.11018
  8. Three antimicrobials alter gut microbial communities and causing different mortality of brown planthopper, Nilaparvata lugens Stål vol.174, pp.None, 2021, https://doi.org/10.1016/j.pestbp.2021.104806