References
- Song MC, Kim E, Ban YH, Yoo YJ, Kim EJ, Park SR, et al. 2013. Achievements and impacts of glycosylation reactions involved in natural product biosynthesis in prokaryotes. Appl. Microbiol. Biotechnol. 97: 5691-5704. https://doi.org/10.1007/s00253-013-4978-7
- Weymouth-Wilson AC. 1997. The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14: 99-110. https://doi.org/10.1039/np9971400099
- Vajaria BN, Patel PS. 2017. Glycosylation: a hallmark of cancer? Glycoconj. J. 34: 147-156. https://doi.org/10.1007/s10719-016-9755-2
- Thibodeaux CJ, Melancon CE, Liu HW. 2007. Unusual sugar biosynthesis and natural product glycodiversification. Nature 446: 1008-1016. https://doi.org/10.1038/nature05814
- Gantt RW, Peltier-Pain P, Thorson JS. 2011. Enzymatic methods for glyco (diversification/randomization) of drugs and small molecules. Nat. Prod. Rep. 28: 1811-1853. https://doi.org/10.1039/c1np00045d
- Zhan YT, Su HY, An W. 2016. Glycosyltransferases and non-alcoholic fatty liver disease. World J. Gastroenterol. 22: 2483-2493. https://doi.org/10.3748/wjg.v22.i8.2483
- Thibodeaux CJ, Melancon CE, Liu HW. 2008. Naturalproduct sugar biosynthesis and enzymatic glycodiversification. Angew. Chem. Int. Ed. Engl. 47: 9814-9859. https://doi.org/10.1002/anie.200801204
- Gantt RW, Goff RD, Williams GJ, Thorson JS. 2008. Probing the aglycon promiscuity of an engineered glycosyltransferase. Angew. Chem. Int. Ed. Engl. 47: 8889-8892. https://doi.org/10.1002/anie.200803508
- Chen R, Zhang Q, Tan B, Zheng L, Li H, Zhu Y, Zhang C. 2017. Genome mining and activation of a silent PKS/NRPS gene cluster direct the production of totopotensamides. Org. Lett. 19: 5697-5700. https://doi.org/10.1021/acs.orglett.7b02878
- Salem S M, W ei denbach S, R ohr J. 2017. Two cooperati veglycosyltransferases are responsible for the sugar diversity of saquayamycins isolated from Streptomyces sp. KY 40-1. ACS Chem. Biol. 12: 2529-2534. https://doi.org/10.1021/acschembio.7b00453
- Zhuang Y, Yang GY, Chen X, Liu Q, Zhang X, Deng Z, et al. 2017. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metab. Eng. 42: 25-32. https://doi.org/10.1016/j.ymben.2017.04.009
-
Xue C , Ti an L , Xu M , Deng Z , Lin W. 2008. A new 24-membered lactone and a new polyene
${\delta}$ -lactone from the marine bacterium Bacillus marinus. J. Antibiot. 61: 668-674. https://doi.org/10.1038/ja.2008.94 - Qin W, Liu Y, Ren P , Zhang J, Li H, Tian L , et al. 2014. Uncovering a glycosyltransferase provides insights into the glycosylation step during macrolactin and bacillaene biosynthesis. Chembiochem 15: 2747-2753. https://doi.org/10.1002/cbic.201402384
- Liu Y, Qin W, Liu Q, Zhang J, Li H, Xu S, et al. 2016. Genome-wide identification and characterization of macrolide glycosyltransferases from a marine-derived Bacillus strain and their phylogenetic distribution. Environ. Microbiol. 18: 4770-4781. https://doi.org/10.1111/1462-2920.13367
- Gustafson KR, Roman M, Fenical W. 1989. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J. Am. Chem. Soc. 111: 7519-7524. https://doi.org/10.1021/ja00201a036
- Sun L, Chen D, Chen R, Xie K, Liu J, Yang L, et al. 2016. Exploring the aglycon promiscuity of a new glycosyltransferase from Pueraria lobata. Tetrahedron Lett. 57: 1518-1521. https://doi.org/10.1016/j.tetlet.2016.02.088
Cited by
- Effective Generation of Glucosylpiericidins with Selective Cytotoxicities and Insights into Their Biosynthesis vol.87, pp.13, 2018, https://doi.org/10.1128/aem.00294-21