DOI QR코드

DOI QR Code

Probiotic Potential of Enterococcus faecium Isolated from Chicken Cecum with Immunomodulating Activity and Promoting Longevity in Caenorhabditis elegans

  • Sim, Insuk (Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University) ;
  • Park, Keun-Tae (Department of Research and Development Center, Milae Resources ML Co. Ltd.) ;
  • Kwon, Gayeung (Department of Public Health Science (BK21 PLUS Program), Graduate School, Korea University) ;
  • Koh, Jong-Ho (Department of Bio-Food Analysis and Processing, Bio-Campus Korea Polytechnic College) ;
  • Lim, Young-Hee (Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University)
  • Received : 2018.02.13
  • Accepted : 2018.04.05
  • Published : 2018.06.28

Abstract

Probiotics, including Enterococcus faecium, confer a health benefit on the host. An Enterococcus strain was isolated from healthy chicken cecum, identified as E. faecium by 16S rDNA gene sequence analysis, and designated as E. faecium L11. To evaluate the potential of E. faecium L11 as a probiotic, the gastrointestinal tolerance, immunomodulatory activity, and lifespan extension properties of the strain were assayed. E. faecium L11 showed >66% and >62% survival in artificial gastric juice (0.3% pepsin, pH 2.5) and simulated small intestinal juice (0.5% bile salt and 0.1% pancreatin), respectively. Heat-killed E. faecium L11 significantly (p < 0.05) increased immune cell proliferation compared with controls, and stimulated the production of cytokines (IL-6 and $TNF-{\alpha}$) by activated macrophages obtained from ICR mice. In addition, E. faecium L11 showed a protective effect against Salmonella Typhimurium infection in Caenorhabditis elegans. In addition, feeding E. faecium L11 significantly (p < 0.05) extended the lifespan of C. elegans compared with the control. Furthermore, genes related to aging and host defense were upregulated in E. faecium L11-fed worms. In conclusion, E. faecium L11, which prolongs the lifespan of C. elegans, may be a potent probiotic supplement for livestock.

Keywords

References

  1. Wang Z, Burwinkel M, Chai W, Lange E, Blohm U, Breithaupt A, et al. 2014. Dietary Enterococcus faecium NCIMB 10415 and zinc oxide stimulate immune reactions to trivalent influenza vaccination in pigs but do not affect virological response upon challenge infection. PLoS One 9: e87007. https://doi.org/10.1371/journal.pone.0087007
  2. Tsai Y-T, Cheng P-C, Pan T-M. 2012. The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biotechnol. 96: 853-862. https://doi.org/10.1007/s00253-012-4407-3
  3. Signorini M, Soto L, Zbrun M, Sequeira G, Rosmini M, Frizzo L. 2012. Impact of probiotic administration on the health and fecal microbiota of young calves: a meta-analysis of randomized controlled trials of lactic acid bacteria. Res. Vet. Sci. 93: 250-258. https://doi.org/10.1016/j.rvsc.2011.05.001
  4. Brestoff JR, Artis D. 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14: 676-684. https://doi.org/10.1038/ni.2640
  5. Hooper LV, Littman DR, Macpherson AJ. 2012. Interactions between the microbiota and the immune system. Science 336: 1268-1273. https://doi.org/10.1126/science.1223490
  6. Cotter PD, Ross RP, Hill C. 2013. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 11: 95-105. https://doi.org/10.1038/nrmicro2937
  7. Salim H, Kang H, Akter N , Kim D , Kim J , Kim M, et al. 2013. Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poult. Sci. 92: 2084-2090. https://doi.org/10.3382/ps.2012-02947
  8. Cao G, Zeng X, Chen A, Zhou L, Zhang L , Xiao Y, et al. 2013. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult. Sci. 92: 2949-2955. https://doi.org/10.3382/ps.2013-03366
  9. Huang Y, Li Y, Huang Q , Cui Z , Yu D, Rajput IR, et al. 2012. Effect of orally administered Enterococcus faecium EF1 on intestinal cytokines and chemokines production of suckling piglets. Pak. Vet. J. 32: 81-84.
  10. Scharek L, Guth J, Reiter K, Weyrauch K, Taras D, Schwerk P, et al. 2005. Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet. Immunol. Immunopathol. 105: 151-161. https://doi.org/10.1016/j.vetimm.2004.12.022
  11. Valeriano VD, Parungao-Balolong MM, Kang DK. 2014. In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J. Appl. Microbiol. 117: 485-497. https://doi.org/10.1111/jam.12539
  12. Tellez G, Pixley C, Wolfenden R, Layton S , Hargis B. 2012. Probiotics/direct fed microbials for Salmonella control in poultry. Food Res. Int. 45: 628-633. https://doi.org/10.1016/j.foodres.2011.03.047
  13. Zhang R, Hou A. 2013. Host-microbe interactions in Caenorhabditis elegans. ISRN Microbiol. 2013: 356451.
  14. Komura T, Ikeda T, Yasui C, Saeki S, Nishikawa Y . 2013. Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans. Biogerontology 14: 73-87. https://doi.org/10.1007/s10522-012-9411-6
  15. Ikeda T, Yasui C, Hoshino K, Arikawa K, Nishikawa Y. 2007. Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella enterica serovar enteritidis. Appl. Environ. Microbiol. 73: 6404-6409. https://doi.org/10.1128/AEM.00704-07
  16. Lee J, Yun HS, Cho KW, Oh S, Kim SH, Chun T, et al. 2011. Evaluation of probiotic characteristics of newly isolated Lactobacillus spp.: immune modulation and longevity. Int. J. Food Microbiol. 148: 80-86. https://doi.org/10.1016/j.ijfoodmicro.2011.05.003
  17. Ye M, Sun L, Yang R, Wang Z, Qi K. 2017. The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. R. Soc. Open Sci. 4: 171012. https://doi.org/10.1098/rsos.171012
  18. Messaoudi S, Kergourlay G, Rossero A, Ferchichi M, Prevost H, Drider D, et al. 2011. Identification of lactobacilli residing in chicken ceca with antagonism against Campylobacter. Int. Microbiol. 14: 103-110.
  19. Anandharaj M, Sivasankari B. 2014. Isolation of potential probiotic Lactobacillus oris HMI68 from mother's milk with cholesterol-reducing property. J. Biosci. Bioeng. 118: 153-159. https://doi.org/10.1016/j.jbiosc.2014.01.015
  20. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  21. Bautista-Gallego J, Arroyo-Lopez F, Rantsiou K, Jimenez- Diaz R, Garrido-Fernandez A, Cocolin L. 2013. Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Res. Int. 50: 135-142. https://doi.org/10.1016/j.foodres.2012.10.004
  22. Ricciardi A, Blaiotta G, Di Cerbo A, Succi M, Aponte M. 2014. Behaviour of lactic acid bacteria populations in Pecorino di Carmasciano cheese samples submitted to environmental conditions prevailing in the gastrointestinal tract: evaluation by means of a polyphasic approach. Int. J Food Microbiol. 179: 64-71. https://doi.org/10.1016/j.ijfoodmicro.2014.03.014
  23. Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ, et al. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33: 282-291. https://doi.org/10.1016/j.fm.2012.10.005
  24. Hwang JH, Yang HS, Ra KS, Park SS, Yu KW. 2013. Intestinal immune system-modulating activity through Peyer's patch of flavonoid glycoside purified from Citrus unshiu peel. J. Food Biochem. 37: 151-160. https://doi.org/10.1111/j.1745-4514.2011.00612.x
  25. Li N, Russell WM, Douglas-Escobar M, Hauser N, Lopez M, Neu J. 2009. Live and heat-killed Lactobacillus rhamnosus GG: effects on proinflammatory and anti-inflammatory cytokines/ chemokines in gastrostomy-fed infant rats. Pediatr. Res. 66: 203-207. https://doi.org/10.1203/PDR.0b013e3181aabd4f
  26. Ranke J, Molter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, et al. 2004. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol. Environ. Saf. 58: 396-404. https://doi.org/10.1016/S0147-6513(03)00105-2
  27. Yoon T J, Yu K-W, Shin K-S, Suh HJ. 2008. Innate immune stimulation of exo-polymers prepared from Cordyceps sinensis by submerged culture. Appl. Microbiol. Biotechnol. 80: 1087-1093. https://doi.org/10.1007/s00253-008-1607-y
  28. Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, et al. 2011. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum. 63: 2671-2680. https://doi.org/10.1002/art.30459
  29. Stiernagle T. 1999. Maintenance of C. elegans, pp. 51-67. In Hope IA (ed.), C. elegans: A Practical Approach. Oxford University Press, New York.
  30. Gruber J , Ng LF, Poovathingal S K, Halliwell B . 2009. Deceptively simple but simply deceptive- Caenorhabditis elegans lifespan studies: considerations for aging and antioxidant effects. FEBS Lett. 583: 3377-3387. https://doi.org/10.1016/j.febslet.2009.09.051
  31. Wu D, Rea SL, Yashin AI, Johnson TE. 2006. Visualizing hidden heterogeneity in isogenic populations of C. elegans. Exp. Gerontol. 41: 261-270. https://doi.org/10.1016/j.exger.2006.01.003
  32. Burdine R D, Stern M J. 1996. Easy RNA isolation from C. elegans: a TRIZOL based method. Worm Breed. Gaz. 14: 10.
  33. Greer E L, Dowlatshahi D , Banko MR, Villen J, Hoang K , Blanchard D, et al. 2007. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17: 1646-1656. https://doi.org/10.1016/j.cub.2007.08.047
  34. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. 2012. Primer3 - new capabilities and interfaces. Nucleic Acids Res. 40: e115. https://doi.org/10.1093/nar/gks596
  35. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  36. Zhao Y, Zhao L, Z heng X , Fu T, Guo H , Ren F. 2013. Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction. J. Microbiol. 51: 183-188. https://doi.org/10.1007/s12275-013-2076-2
  37. Joint FAO/WHO Working Group. 2002. Guidelines for the evaluation of probiotics in foods. Food and Agricultural Organization of the United Nations and World Health Organization FAO/WHO, London, Ontario, Canada.
  38. Zhao T, Li Y, Liu B, Bronson RT, Halaweish I, Alam HB. 2014. Histone deacetylase III as a potential therapeutic target for the treatment of lethal sepsis. J. Trauma Acute Care Surg. 77: 913-919. https://doi.org/10.1097/TA.0000000000000347
  39. Mishra K, Padwad Y, Jain M, Karan D, Ganju L, Sawhney R. 2006. Aqueous extract of Rhodiola imbricata rhizome stimulates proinflammatory mediators via phosphorylated $l{\kappa}B$ and transcription factor nuclear factor-${\kappa}B$. Immunopharmacol. Immunotoxicol. 28: 201-212. https://doi.org/10.1080/08923970600815139
  40. Turvey SE, Broide DH. 2010. Innate immunity. J. Allergy Clin. Immunol. 125: S24-S32. https://doi.org/10.1016/j.jaci.2009.07.016
  41. Schepetkin IA, Xie G, Kirpotina LN, Klein RA, Jutila MA, Quinn MT. 2008. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha. Int. Immunopharmacol. 8: 1455-1466. https://doi.org/10.1016/j.intimp.2008.06.003
  42. Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S. 2002. Cutting edge: impaired Toll-like receptor expression and function in aging. J. Immunol. 169: 4697-4701. https://doi.org/10.4049/jimmunol.169.9.4697
  43. Radtke S, Wuller S, Yang X-P, Lippok BE, Mutze B, Mais C, et al. 2010. Cross-regulation of cytokine signalling: proinflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation. J. Cell Sci. 123: 947-959. https://doi.org/10.1242/jcs.065326
  44. Niu X, Wang Y, Li W, Zhang H, Wang X, Mu Q, et al. 2015. Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-${\alpha}$ and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway. Int. Immunopharmacol. 29: 779-786. https://doi.org/10.1016/j.intimp.2015.08.041
  45. Grompone G, Martorell P, Llopis S, Gonzalez N, Genoves S, Mulet AP, et al. 2012. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One 7: e52493. https://doi.org/10.1371/journal.pone.0052493
  46. Kurz CL, Ewbank JJ. 2003. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 4: 380-390.
  47. Millet AC, Ewbank JJ. 2004. Immunity in Caenorhabditis elegans. Curr. Opin. Immunol. 16: 4-9. https://doi.org/10.1016/j.coi.2003.11.005
  48. Okuyama T, Inoue H, Ookuma S, Satoh T, Kano K, Honjoh S, et al. 2010. The ERK-MAPK pathway regulates longevity through SKN-1 and insulin-like signaling in Caenorhabditis elegans. J. Biol. Chem. 285: 30274-30281. https://doi.org/10.1074/jbc.M110.146274
  49. Engelmann I, Pujol N. 2010. Innate immunity in C. elegans, pp. 105-121. In Soderhall K (ed), Invertebrate Immunity. Advances in Experimental Medicine and Biology, Vol. 708. Springer, Boston, MA.
  50. Araujo TF, Ferreira CLDLF. 2013. The genus Enterococcus as probiotic: safety concerns. Braz. Arch. Biol. Technol. 56: 457-466. https://doi.org/10.1590/S1516-89132013000300014

Cited by

  1. The Inflammatory Response to Enterotoxigenic E. coli and Probiotic E. faecium in a Coculture Model of Porcine Intestinal Epithelial and Dendritic Cells vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/9368295
  2. Caenorhabditis Elegans and Probiotics Interactions from a Prolongevity Perspective vol.20, pp.20, 2018, https://doi.org/10.3390/ijms20205020
  3. Bifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity vol.29, pp.12, 2018, https://doi.org/10.4014/jmb.1909.09010
  4. Analysis of the effects of nanosilver on bacterial community in the intestinal fluid of silkworms using high-throughput sequencing vol.110, pp.3, 2020, https://doi.org/10.1017/s0007485319000634
  5. Evaluation of Probiotic Properties of Pediococcus acidilactici M76 Producing Functional Exopolysaccharides and Its Lactic Acid Fermentation of Black Raspberry Extract vol.9, pp.7, 2021, https://doi.org/10.3390/microorganisms9071364
  6. Novel Insights into the Role of Probiotics in Respiratory Infections, Allergies, Cancer, and Neurological Abnormalities vol.9, pp.3, 2018, https://doi.org/10.3390/diseases9030060
  7. Correlation between exopolysaccharide biosynthesis and gastrointestinal tolerance of Lactiplantibacillus plantarum vol.132, pp.1, 2018, https://doi.org/10.1111/jam.15213
  8. In vitro and in vivo evaluation of probiotic properties of Corynebacterium accolens isolated from the human nasal cavity vol.255, pp.None, 2018, https://doi.org/10.1016/j.micres.2021.126927