DOI QR코드

DOI QR Code

Fractionated Coptis chinensis Extract and Its Bioactive Component Suppress Propionibacterium acnes-Stimulated Inflammation in Human Keratinocytes

  • Received : 2017.12.26
  • Accepted : 2018.03.29
  • Published : 2018.06.28

Abstract

Coptis chinensis (CC) is widely used in Asian countries to treat inflammatory diseases. We investigated the anti-inflammatory activity of the aqueous fraction separated from CC extract and of berberine, its key bioactive component, in human keratinocytes and the possible molecular mechanisms underlying this. Treating HaCaT keratinocytic cells with heat-killed Propionibacterium acnes induced nitric oxide and proinflammatory cytokine (e.g., tumor necrosis $factor-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-8) production and their mRNA expression; these effects were suppressed by pretreatment with the aqueous fraction or berberine, which also suppressed the phosphorylation of ERK, JNK, and p38 kinases and the nuclear expression of nuclear factor $(NF)-{\kappa}B$ p65 in P. acnes-stimulated cells. Thus, the aqueous fraction and berberine effectively exerted anti-inflammatory activities by suppressing mitogen-activated protein kinase and $NF-{\kappa}B$ signaling pathways in human keratinocytes and may be used for treating P. acnes-induced inflammatory skin diseases.

Keywords

References

  1. Omer H, McDowell A, Alexeyev OA. 2017. Understanding the role of Propionibacterium acnes in acne vulgaris: the critical importance of skin sampling methodologies. Clin. Dermatol. 35: 118-129. https://doi.org/10.1016/j.clindermatol.2016.10.003
  2. Dessinioti C, Katsambas AD. 2010. The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin. Dermatol. 28: 2-7. https://doi.org/10.1016/j.clindermatol.2009.03.012
  3. Farrar MD, Ingham E. 2004. Acne: inflammation. Clin. Dermatol. 22: 380-384. https://doi.org/10.1016/j.clindermatol.2004.03.006
  4. Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. 2002. Activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. J. Immunol. 169: 1535-1541. https://doi.org/10.4049/jimmunol.169.3.1535
  5. Kollisch G, Kalali BN, Voelcker V, Wallich R, Behrendt H, Ring J, et al. 2005. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology 114: 531-541. https://doi.org/10.1111/j.1365-2567.2005.02122.x
  6. Grange PA, Raingeaud J, Calvez V, Dupin N. 2009. Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-${\kappa}B$ and MAPK pathways. J. Dermatol. Sci. 56: 106-112. https://doi.org/10.1016/j.jdermsci.2009.08.001
  7. Kim JM, Jung HA, Choi JS, Lee NG. 2010. Identification of anti-inflammatory target genes of Rhizoma coptidis extract in lipopolysaccharide-stimulated RAW264.7 murine macrophagelike cells. J. Ethnopharmacol. 130: 354-362. https://doi.org/10.1016/j.jep.2010.05.022
  8. Teng H, Choi YH. 2014. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology. Food Chem. 142: 299-305. https://doi.org/10.1016/j.foodchem.2013.06.136
  9. Yan D, Jin C, Xiao XH, Dong XP. 2008. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J. Biochem. Biophys. Methods 70: 845-849. https://doi.org/10.1016/j.jbbm.2007.07.009
  10. Zou K, Li Z, Zhang Y, Zhang HY, Li B, Zhu WL, et al. 2017. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol. Sin. 38: 157-167. https://doi.org/10.1038/aps.2016.125
  11. Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling KH. 2014. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur. J. Pharmacol. 740: 584-595. https://doi.org/10.1016/j.ejphar.2014.06.025
  12. Roux PP, Blenis J. 2004. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68: 320-344. https://doi.org/10.1128/MMBR.68.2.320-344.2004
  13. Remppis A, Bea F, Greten HJ, Buttler A, Wang H, Zhou Q, et al. 2010. Rhizoma coptidis inhibits LPS-induced MCP-1/ CCL2 production in murine macrophages via an AP-1 and NF-${\kappa}B$-dependent pathway. Mediators Inflamm. 2010: 194896.
  14. Huang WC, Tsai TH, Chuang LT, Li YY, Zouboulis CC, Tsai PJ. 2014. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J. Dermatol. Sci. 73: 232-240. https://doi.org/10.1016/j.jdermsci.2013.10.010
  15. Wu J, Zhang H, Hu B, Yang L, Wang P, Wang F, et al. 2016. Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Eur. J. Pharmacol. 780: 106-114. https://doi.org/10.1016/j.ejphar.2016.03.037
  16. Turner MD, Nedjai B, Hurst T, Pennington DJ. 2014. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843: 2563- 2582. https://doi.org/10.1016/j.bbamcr.2014.05.014
  17. Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L. 2005. Distinct strains of Propionibacterium acnes induce selective human ${\beta}$-defensin-2 and interleukin-8 expression in human keratinocytes through Toll-like receptors. J. Invest. Dermatol. 124: 931-938. https://doi.org/10.1111/j.0022-202X.2005.23705.x
  18. Lee WR, Kim KH, An HJ, Kim JY, Chang YC, Chung H, et al. 2014. The protective effects of melittin on Propionibacterium acnes-induced inflammatory responses in vitro and in vivo. J. Invest. Dermatol. 134: 1922-1930. https://doi.org/10.1038/jid.2014.75
  19. Viatour P, Merville MP, Bours V, Chariot A. 2005. Phosphorylation of NF-${\kappa}B$ and $I{\kappa}B$ proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30: 43-52. https://doi.org/10.1016/j.tibs.2004.11.009
  20. Enk R, Ehehalt R, Graham JE, Bierhaus A, Remppis A, Greten HJ. 2007. Differential effect of Rhizoma coptidis and its main alkaloid compound berberine on TNF-${\alpha}$ induced NF${\kappa}B$ translocation in human keratinocytes. J. Ethnopharmacol. 109: 170-175. https://doi.org/10.1016/j.jep.2006.07.013
  21. Li JY, Wang XB, Luo JG, Kong LY. 2015. Seasonal variation of alkaloid contents and anti-inflammatory activity of Rhizoma coptidis based on fingerprints combined with chemometrics methods. J. Chromatogr. Sci. 53: 1131-1139. https://doi.org/10.1093/chromsci/bmu175
  22. Sugisaki H, Yamanaka K, Kakeda M, Kitagawa H, Tanaka K, Watanabe K, et al. 2009. Increased interferon-g, interleukin- 12p40 and IL-8 production in Propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: host response but not bacterial species is the determinant factor of the disease. J. Dermatol. Sci. 55: 47-52. https://doi.org/10.1016/j.jdermsci.2009.02.015
  23. Wang YY, Ryu AR, Jin S, Jeon YM, Lee MY. 2017. Chlorin e6-mediated photodynamic therapy suppresses P. acnesinduced inflammatory response via NF${\kappa}B$ and MAPKs signaling pathway. PLoS One 12: e0170599. https://doi.org/10.1371/journal.pone.0170599
  24. Molina M, Cid VJ, Martin H. 2010. Fine regulation of Saccharomyces cerevisiae MAPK pathways by post-translational modifications. Yeast 27: 503-511. https://doi.org/10.1002/yea.1791
  25. Lee AY, Lee S, Kim HY, Lee S, Cho EJ. 2016. Anti-inflammatory effects of luteolin and luteoloside from Taraxacum coreanum in RAW264.7 macrophage cells. Appl. Biol. Chem. 59: 747-754. https://doi.org/10.1007/s13765-016-0220-5
  26. Bonizzi G, Karin M. 2004. The two NF-${\kappa}B$ activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25: 280-288. https://doi.org/10.1016/j.it.2004.03.008

Cited by

  1. Keratinocyte infection by Actinomadura madurae triggers an inflammatory response vol.113, pp.7, 2018, https://doi.org/10.1093/trstmh/trz022
  2. Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review vol.312, pp.1, 2018, https://doi.org/10.1007/s00403-019-01968-z
  3. Application of Chinese Medicine in the Management of Critical Conditions: A Review on Sepsis vol.48, pp.6, 2020, https://doi.org/10.1142/s0192415x20500640
  4. Characterization of hydrocoptisonine metabolites in human liver microsomes using a high-resolution quadrupole-orbitrap mass spectrometer vol.50, pp.12, 2018, https://doi.org/10.1080/00498254.2020.1795304
  5. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential vol.169, pp.None, 2018, https://doi.org/10.1016/j.phrs.2021.105667
  6. Efficacy and Safety of Modified Huang-Lian-Jie-Du Decoction Cream on Cancer Patients with Skin Side Effects Caused by EGFR Inhibition vol.9, pp.7, 2021, https://doi.org/10.3390/pr9071081
  7. Predicting the Potential Distribution of Perennial Plant Coptis chinensis Franch. in China under Multiple Climate Change Scenarios vol.12, pp.11, 2021, https://doi.org/10.3390/f12111464
  8. Anti-Acne Vulgaris Potential of the Ethanolic Extract of Mesua ferrea L. Flowers vol.8, pp.4, 2018, https://doi.org/10.3390/cosmetics8040107