References
- Omer H, McDowell A, Alexeyev OA. 2017. Understanding the role of Propionibacterium acnes in acne vulgaris: the critical importance of skin sampling methodologies. Clin. Dermatol. 35: 118-129. https://doi.org/10.1016/j.clindermatol.2016.10.003
- Dessinioti C, Katsambas AD. 2010. The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin. Dermatol. 28: 2-7. https://doi.org/10.1016/j.clindermatol.2009.03.012
- Farrar MD, Ingham E. 2004. Acne: inflammation. Clin. Dermatol. 22: 380-384. https://doi.org/10.1016/j.clindermatol.2004.03.006
- Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. 2002. Activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. J. Immunol. 169: 1535-1541. https://doi.org/10.4049/jimmunol.169.3.1535
- Kollisch G, Kalali BN, Voelcker V, Wallich R, Behrendt H, Ring J, et al. 2005. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology 114: 531-541. https://doi.org/10.1111/j.1365-2567.2005.02122.x
-
Grange PA, Raingeaud J, Calvez V, Dupin N. 2009. Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-
${\kappa}B$ and MAPK pathways. J. Dermatol. Sci. 56: 106-112. https://doi.org/10.1016/j.jdermsci.2009.08.001 - Kim JM, Jung HA, Choi JS, Lee NG. 2010. Identification of anti-inflammatory target genes of Rhizoma coptidis extract in lipopolysaccharide-stimulated RAW264.7 murine macrophagelike cells. J. Ethnopharmacol. 130: 354-362. https://doi.org/10.1016/j.jep.2010.05.022
- Teng H, Choi YH. 2014. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology. Food Chem. 142: 299-305. https://doi.org/10.1016/j.foodchem.2013.06.136
- Yan D, Jin C, Xiao XH, Dong XP. 2008. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J. Biochem. Biophys. Methods 70: 845-849. https://doi.org/10.1016/j.jbbm.2007.07.009
- Zou K, Li Z, Zhang Y, Zhang HY, Li B, Zhu WL, et al. 2017. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol. Sin. 38: 157-167. https://doi.org/10.1038/aps.2016.125
- Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling KH. 2014. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur. J. Pharmacol. 740: 584-595. https://doi.org/10.1016/j.ejphar.2014.06.025
- Roux PP, Blenis J. 2004. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68: 320-344. https://doi.org/10.1128/MMBR.68.2.320-344.2004
-
Remppis A, Bea F, Greten HJ, Buttler A, Wang H, Zhou Q, et al. 2010. Rhizoma coptidis inhibits LPS-induced MCP-1/ CCL2 production in murine macrophages via an AP-1 and NF-
${\kappa}B$ -dependent pathway. Mediators Inflamm. 2010: 194896. - Huang WC, Tsai TH, Chuang LT, Li YY, Zouboulis CC, Tsai PJ. 2014. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J. Dermatol. Sci. 73: 232-240. https://doi.org/10.1016/j.jdermsci.2013.10.010
- Wu J, Zhang H, Hu B, Yang L, Wang P, Wang F, et al. 2016. Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Eur. J. Pharmacol. 780: 106-114. https://doi.org/10.1016/j.ejphar.2016.03.037
- Turner MD, Nedjai B, Hurst T, Pennington DJ. 2014. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843: 2563- 2582. https://doi.org/10.1016/j.bbamcr.2014.05.014
-
Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L. 2005. Distinct strains of Propionibacterium acnes induce selective human
${\beta}$ -defensin-2 and interleukin-8 expression in human keratinocytes through Toll-like receptors. J. Invest. Dermatol. 124: 931-938. https://doi.org/10.1111/j.0022-202X.2005.23705.x - Lee WR, Kim KH, An HJ, Kim JY, Chang YC, Chung H, et al. 2014. The protective effects of melittin on Propionibacterium acnes-induced inflammatory responses in vitro and in vivo. J. Invest. Dermatol. 134: 1922-1930. https://doi.org/10.1038/jid.2014.75
-
Viatour P, Merville MP, Bours V, Chariot A. 2005. Phosphorylation of NF-
${\kappa}B$ and$I{\kappa}B$ proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30: 43-52. https://doi.org/10.1016/j.tibs.2004.11.009 -
Enk R, Ehehalt R, Graham JE, Bierhaus A, Remppis A, Greten HJ. 2007. Differential effect of Rhizoma coptidis and its main alkaloid compound berberine on TNF-
${\alpha}$ induced NF${\kappa}B$ translocation in human keratinocytes. J. Ethnopharmacol. 109: 170-175. https://doi.org/10.1016/j.jep.2006.07.013 - Li JY, Wang XB, Luo JG, Kong LY. 2015. Seasonal variation of alkaloid contents and anti-inflammatory activity of Rhizoma coptidis based on fingerprints combined with chemometrics methods. J. Chromatogr. Sci. 53: 1131-1139. https://doi.org/10.1093/chromsci/bmu175
- Sugisaki H, Yamanaka K, Kakeda M, Kitagawa H, Tanaka K, Watanabe K, et al. 2009. Increased interferon-g, interleukin- 12p40 and IL-8 production in Propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: host response but not bacterial species is the determinant factor of the disease. J. Dermatol. Sci. 55: 47-52. https://doi.org/10.1016/j.jdermsci.2009.02.015
-
Wang YY, Ryu AR, Jin S, Jeon YM, Lee MY. 2017. Chlorin e6-mediated photodynamic therapy suppresses P. acnesinduced inflammatory response via NF
${\kappa}B$ and MAPKs signaling pathway. PLoS One 12: e0170599. https://doi.org/10.1371/journal.pone.0170599 - Molina M, Cid VJ, Martin H. 2010. Fine regulation of Saccharomyces cerevisiae MAPK pathways by post-translational modifications. Yeast 27: 503-511. https://doi.org/10.1002/yea.1791
- Lee AY, Lee S, Kim HY, Lee S, Cho EJ. 2016. Anti-inflammatory effects of luteolin and luteoloside from Taraxacum coreanum in RAW264.7 macrophage cells. Appl. Biol. Chem. 59: 747-754. https://doi.org/10.1007/s13765-016-0220-5
-
Bonizzi G, Karin M. 2004. The two NF-
${\kappa}B$ activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25: 280-288. https://doi.org/10.1016/j.it.2004.03.008
Cited by
- Keratinocyte infection by Actinomadura madurae triggers an inflammatory response vol.113, pp.7, 2018, https://doi.org/10.1093/trstmh/trz022
- Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review vol.312, pp.1, 2018, https://doi.org/10.1007/s00403-019-01968-z
- Application of Chinese Medicine in the Management of Critical Conditions: A Review on Sepsis vol.48, pp.6, 2020, https://doi.org/10.1142/s0192415x20500640
- Characterization of hydrocoptisonine metabolites in human liver microsomes using a high-resolution quadrupole-orbitrap mass spectrometer vol.50, pp.12, 2018, https://doi.org/10.1080/00498254.2020.1795304
- Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential vol.169, pp.None, 2018, https://doi.org/10.1016/j.phrs.2021.105667
- Efficacy and Safety of Modified Huang-Lian-Jie-Du Decoction Cream on Cancer Patients with Skin Side Effects Caused by EGFR Inhibition vol.9, pp.7, 2021, https://doi.org/10.3390/pr9071081
- Predicting the Potential Distribution of Perennial Plant Coptis chinensis Franch. in China under Multiple Climate Change Scenarios vol.12, pp.11, 2021, https://doi.org/10.3390/f12111464
- Anti-Acne Vulgaris Potential of the Ethanolic Extract of Mesua ferrea L. Flowers vol.8, pp.4, 2018, https://doi.org/10.3390/cosmetics8040107