DOI QR코드

DOI QR Code

Prevalence and Molecular Characterization of ESBL Producing Enterobacteriaceae from Highly Polluted Stretch of River Yamuna, India

  • 투고 : 2018.04.26
  • 심사 : 2018.05.21
  • 발행 : 2018.06.28

초록

The rapid increase in number and diversity of Extended Spectrum ${\beta}$-Lactamases (ESBLs) producing Enterobacteriaceae in natural aquatic environment is a major health concern worldwide. This study investigates abundance and distribution of ESBL producing multidrug resistant Enterobacteriaceae and molecular characterization of ESBL genes among isolates from highly polluted stretch of river Yamuna, India. Water samples were collected from ten different sites distributed across Delhi stretch of river Yamuna, during 2014-15. A total of 506 non duplicate Enterobacteriaceae isolates were obtained. Phenotypic detection of ESBL production and antibiotic sensitivity for 15 different antibiotics were performed according to CLSI guidelines (Clinical and Laboratory Standard Institute, 2015). A subset of ESBL positive Enterobacteriaceae isolates were identified by 16S rRNA gene and screened for ESBL genes, such as $bla_{CTX-M}$, $bla_{TEM}$ and $bla_{OXA}$. Out of 506 non-duplicate bacterial isolates obtained, 175 (34.58%) were positive for ESBL production. Susceptibility pattern for fifteen antibiotics used in this study revealed higher resistance to cefazolin, rifampicin and ampicillin. A high proportion (76.57%) of ESBL positive isolates showed multidrug resistance phenotype, with MAR index of 0.39 at Buddha Vihar and Old Delhi Railway bridge sampling site. Identification and PCR based characterization of ESBL genes revealed the prevalence of $bla_{CTX-M}$ and $bla_{TEM}$ genes to be 88.33% and 61.66%, respectively. Co-occurrence of $bla_{CTX-M}$ and $bla_{TEM}$ genes was detected in 58.33% of the resistant bacteria. The $bla_{OXA}$ gene was not detected in any isolates. This study highlights deteriorating condition of urban aquatic environment due to rising level of ESBL producing Enterobacteriaceae with multidrug resistance phenotype.

키워드

참고문헌

  1. O'Neill J. 2016. The Review on Antimicrobial Resistance. 2016. Tackling drug-resistant infections globally: final report and recommendations URL:http://amr-review.org/ [accessed 2016-07-26] [WebCite Cache ID 6jI5znBnd].
  2. Li X-Z, Mehrotra M, Ghimire S, Adewoye L. 2007. ${\beta}$-Lactam resistance and ${\beta}$-lactamases in bacteria of animal origin. Vet. Microbiol. 121: 197-214. https://doi.org/10.1016/j.vetmic.2007.01.015
  3. Carattoli A. 2013. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 303: 298-304. https://doi.org/10.1016/j.ijmm.2013.02.001
  4. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important ${\beta}$-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 65: 490-495. https://doi.org/10.1093/jac/dkp498
  5. Canton R, Coque TM. 2006. The CTX-M ${\beta}$-lactamase pandemic. Curr. Opin. Microbiol. 9: 466-475. https://doi.org/10.1016/j.mib.2006.08.011
  6. Pitout JD, Laupland KB. 2008. Extended-spectrum ${\beta}$-lactamaseproducing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8: 159-166. https://doi.org/10.1016/S1473-3099(08)70041-0
  7. Lupo A, Coyne S, Berendonk TU. 2012. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front. Microbiol. 3: 18.
  8. Tacao M, Moura A, Correia A, Henriques I. 2014. Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems. Water Res. 48: 100-107. https://doi.org/10.1016/j.watres.2013.09.021
  9. Parveen S, Portier KM, Robinson K, Edmiston L, Tamplin ML. 1999. Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl. Environ. Microbiol. 65: 3142-3147.
  10. Sanderson H, Fricker C, Brown RS, Majury A, Liss SN. 2016. Antibiotic resistance genes as an emerging environmental contaminant. Environ. Rev. 24: 205-218. https://doi.org/10.1139/er-2015-0069
  11. Cockerill F, Patel J. 2015. M100-S25 performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. Clin. Lab Stand. Inst. 35: 44-49.
  12. Falagas ME, Karageorgopoulos DE. 2008. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin. Infect. Dis. 46: 1121-1122. https://doi.org/10.1086/528867
  13. Krumperman PH. 1983. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 46: 165-170.
  14. Azam M, Jan AT, Haq QM. 2016. bla CTX-M-152, a Novel Variant of CTX-M-group-25, Identified in a Study Performed on the Prevalence of Multidrug Resistance among Natural Inhabitants of River Yamuna, India. Front. Microbiol. 7: 176.
  15. Bajaj P, Singh NS, Kanaujia PK, Virdi JS. 2015. Distribution and molecular characterization of genes encoding CTX-M and AmpC ${\beta}$-lactamases in Escherichia coli isolated from an Indian urban aquatic environment. Sci. Total Environ. 505: 350-356. https://doi.org/10.1016/j.scitotenv.2014.09.084
  16. Chen H, Shu W, Chang X, Chen JA, Guo Y, Tan Y. 2010. The profile of antibiotics resistance and integrons of extended-spectrum ${\beta}$-lactamase producing thermotolerant coliforms isolated from the Yangtze River basin in Chongqing. Environ. Pollut. 158: 2459-2464. https://doi.org/10.1016/j.envpol.2010.03.023
  17. Tacao M, Correia A, Henriques I. 2012. Resistance to broad-spectrum antibiotics in aquatic systems: anthropogenic activities modulate the dissemination of blaCTX-M-like genes. Appl. Environ. Microbiol. 78: 4134-4140. https://doi.org/10.1128/AEM.00359-12
  18. Zurfluh K, Hachler H, Nuesch-Inderbinen M, Stephan R. 2013. Characteristics of extended-spectrum ${\beta}$-lactamase- and carbapenemase-producing Enterobacteriaceae Isolates from rivers and lakes in Switzerland. Appl. Environ. Microbiol. 79: 3021-3026. https://doi.org/10.1128/AEM.00054-13
  19. Chen P-A, Hung C-H, Huang P-C, Chen J-R, Huang I-F, Chen W-L, et al. 2016. Characteristics of CTX-M extended-spectrum ${\beta}$-lactamase-producing Escherichia coli strains isolated from multiple rivers in Southern Taiwan. Appl. Environ. Microbiol. 82: 1889-1897. https://doi.org/10.1128/AEM.03222-15
  20. Caltagirone M, Nucleo E, Spalla M, Zara F, Novazzi F, Marchetti VM, et al. 2017. Occurrence of Extended Spectrum ${\beta}$-Lactamases, KPC-Type, and MCR-1. 2-Producing Enterobacteriaceae from Wells, River Water, and Wastewater Treatment Plants in Oltrepo Pavese Area, Northern Italy. Front. Microbiol. 8: 2232. https://doi.org/10.3389/fmicb.2017.02232
  21. Lenart-Boron A. 2017. Antimicrobial resistance and prevalence of extended-spectrum ${\beta}$-lactamase genes in Escherichia coli from major rivers in Podhale, southern Poland. Int. J. Environ. Sci. Technol. 14: 241-250. https://doi.org/10.1007/s13762-016-1155-4
  22. Jang J, Suh Y-S, Di DY, Unno T, Sadowsky MJ, Hur H-G. 2013. Pathogenic Escherichia coli strains producing extended-spectrum ${\beta}$-lactamases in the Yeongsan River basin of South Korea. Environ Sci. Technol. 47: 1128-1136. https://doi.org/10.1021/es303577u
  23. Said LB, Jouini A, Alonso CA, Klibi N, Dziri R, Boudabous A, et al. 2016. Characteristics of extended-spectrum ${\beta}$-lactamase (ESBL)-and pAmpC${\beta}$-lactamase-producing Enterobacteriaceae of water samples in Tunisia. Sci. Total Environ. 550: 1103-1109. https://doi.org/10.1016/j.scitotenv.2016.01.042
  24. Lu SY, Zhang YL, Geng SN, Li TY, Ye ZM, Zhang DS, et al. 2010. High diversity of extended-spectrum ${\beta}$-lactamase-producing bacteria in an urban river sediment habitat. Appl. Environ. Microbiol. 76: 5972-5976. https://doi.org/10.1128/AEM.00711-10
  25. Ansari S, Nepal HP, Gautam R, Shrestha S, Neopane P, Gurung G, et al. 2015. Community acquired multi-drug resistant clinical isolates of Escherichia coli in a tertiary care center of Nepal. Antimicrob. Resist. Infect. Control. 4: 15. https://doi.org/10.1186/s13756-015-0059-2
  26. Holzel CS, Schwaiger K, Harms K, Kuchenhoff H, Kunz A, Meyer K, et al. 2010. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria. Environ. Res. 110: 318-326. https://doi.org/10.1016/j.envres.2010.02.009
  27. Shahraki-Zahedani S, Rigi S, Bokaeian M, Ansari-Moghaddam A, Moghadampour M. 2016. First report of TEM-104-, SHV-99-, SHV-108-, and SHV-110-producing Klebsiella pneumoniae from Iran. Rev. Soc. Bras. Med. Trop. 49: 441-445. https://doi.org/10.1590/0037-8682-0114-2016
  28. Vivant AL, Boutin C, Prost-Boucle S, Papias S, Hartmann A, Depret G, et al. 2016. Free water surface constructed wetlands limit the dissemination of extended-spectrum ${\beta}$-lactamase producing Escherichia coli in the natural environment. Water Res. 104: 178-188. https://doi.org/10.1016/j.watres.2016.08.015
  29. Franz E, Veenman C, van Hoek AH, de Roda Husman A, Blaak H. 2015. Pathogenic Escherichia coli producing extended-spectrum ${\beta}$-lactamases isolated from surface water and wastewater. Sci. Rep. 5: 14372. https://doi.org/10.1038/srep14372
  30. Diwan V, Chandran SP, Tamhankar AJ, Stalsby Lundborg C, Macaden R. 2012. Identification of extended-spectrum ${\beta}$-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from central India. J. Antimicrob. Chemother. 67: 857-859. https://doi.org/10.1093/jac/dkr564
  31. Reinthaler FF, Feierl G, Galler H, Haas D, Leitner E, Mascher F, et al. 2010. ESBL-producing E. coli in Austrian sewage sludge. Water Res. 44: 1981-1985. https://doi.org/10.1016/j.watres.2009.11.052
  32. Poirel L, Bonnin RA, Nordmann P. 2012. Genetic support and diversity of acquired extended-spectrum ${\beta}$-lactamases in Gramnegative rods. Infect. Genet. Evol. 12: 883-893. https://doi.org/10.1016/j.meegid.2012.02.008
  33. Wang H, Kelkar S, Wu W, Chen M, Quinn JP. 2003. Clinical isolates of Enterobacteriaceae producing extended-spectrum ${\beta}$-lactamases: prevalence of CTX-M-3 at a hospital in China. Antimicrob. Agents Chemother. 47: 790-793. https://doi.org/10.1128/AAC.47.2.790-793.2003
  34. Kiratisin P, Apisarnthanarak A, Saifon P, Laesripa C, Kitphati R, Mundy LM. 2007. The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum ${\beta}$-lactamase, CTX-M-55, in both community-onset and hospital-acquired infections in Thailand. Diagn. Microbiol. Infect. Dis. 58: 349-355. https://doi.org/10.1016/j.diagmicrobio.2007.02.005
  35. Lee SY, Park YJ, Yu JK, Jung S, Kim Y, Jeong SH, et al. 2012. Prevalence of acquired fosfomycin resistance among extended-spectrum ${\beta}$-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J. Antimicrob. Chemother. 67: 2843-2847. https://doi.org/10.1093/jac/dks319
  36. Sjolund-Karlsson M, Howie R, Krueger A, Rickert R, Pecic G, Lupoli K, et al. 2011. CTX-M-producing non-Typhi Salmonella spp. isolated from humans, United States. Emerg. Infect. Dis. 17: 97-99. https://doi.org/10.3201/eid1701.100511
  37. Zhang J, Zheng B, Zhao L, Wei Z, Ji J, Li L, et al. 2014. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect. Dis. 14: 659. https://doi.org/10.1186/s12879-014-0659-0
  38. Maravic A, Skocibusic M, Fredotovic Z, Samanic I, Cvjetan S, Knezovic M, et al. 2016. Urban riverine environment is a source of multidrug-resistant and ESBL-producing clinically important Acinetobacter spp. Environ. Sci. Pollut. Res. Int. 23: 3525-3535. https://doi.org/10.1007/s11356-015-5586-0
  39. Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, et al. 2004. Molecular characterization of extended-spectrum ${\beta}$-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J. Clin. Microbiol. 42: 2902-2906. https://doi.org/10.1128/JCM.42.7.2902-2906.2004
  40. Naiemi NA, Duim B, Savelkoul PH, Spanjaard L, de Jonge E, Bart A, et al. 2005. Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. J. Clin. Microbiol. 43: 4862-4864. https://doi.org/10.1128/JCM.43.9.4862-4864.2005
  41. Lahlaoui H, Dahmen S, Moussa MB, Omrane B. 2011. First detection of TEM-116 extended-spectrum ${\beta}$-lactamase in a Providencia stuartii isolate from a Tunisian hospital. Indian J. Med. Microbiol. 29: 258-261. https://doi.org/10.4103/0255-0857.83909
  42. Barguigua A, El Otmani F, Talmi M, Zerouali K, Timinouni M. 2013. Prevalence and types of extended spectrum ${\beta}$-lactamases among urinary Escherichia coli isolates in Moroccan community. Microb. Pathog. 61-62: 16-22. https://doi.org/10.1016/j.micpath.2013.04.010
  43. Romero ED, Padilla TP, Hernandez AH, Grande RP, Vazquez MF, Garcia IG, et al. 2007. Prevalence of clinical isolates of Escherichia coli and Klebsiella spp. producing multiple extended-spectrum ${\beta}$-lactamases. Diagn. Microb. Infect. Dis. 59: 433-437. https://doi.org/10.1016/j.diagmicrobio.2007.06.007
  44. Al-Agamy MH, Shibl AM, Hafez MM, Al-Ahdal MN, Memish ZA, Khubnani H. 2014. Molecular characteristics of extended-spectrum ${\beta}$-lactamase-producing Escherichia coli in Riyadh: emergence of CTX-M-15-producing E. coli ST131. Ann. Clin. Microbiol. Antimicrob. 13: 4. https://doi.org/10.1186/1476-0711-13-4

피인용 문헌

  1. Prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in wastewater: a systematic review and meta-analysis vol.19, pp.5, 2018, https://doi.org/10.2166/wh.2021.112