DOI QR코드

DOI QR Code

Enhanced Production of Astaxanthin by Metabolically Engineered Non-mevalonate Pathway in Escherichia coli

  • Jeong, Tae Hyug (Department of Marine and Fisheries Resources, Mokpo National University) ;
  • Cho, Youn Su (Department of Fishery Biology, Pukyong National University) ;
  • Choi, Seong-Seok (Department of Microbiology, Pukyong National University) ;
  • Kim, Gun-Do (Department of Microbiology, Pukyong National University) ;
  • Lim, Han Kyu (Department of Marine and Fisheries Resources, Mokpo National University)
  • Received : 2018.01.11
  • Accepted : 2018.03.16
  • Published : 2018.06.28

Abstract

Astaxanthin is one of the major carotenoids used in pigment has a great economical value in pharmaceutical markets, feeding, nutraceutical and food industries. This study was to increase the production of astaxanthin by co-expression with transformed Escherichia coli using six genes involved in the non-mevalonate pathway. Involved in the non-mevalonate biosynthetic pathway of the strain Kocuria gwangalliensis were cloned dxs, ispC, ispD, ispE, ispF, ispG, ispH and idi genes in order to increase astaxanthin production from the transformed E. coli. And co-expression with the genes to compared the amount of astaxanthin production. This engineered E. coli, containing both the non-mevalonate pathway gene and the astaxanthin biosynthesis gene cluster, produced astaxanthin at $1,100{\mu}g/g$ DCW (dry cell weight), resulting in approximately three times the production of astaxanthin.

Keywords

References

  1. Kurihara H, Koda H, Asami S, Kiso Y, Tanaka T. 2002. Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress. Life Sci. 70: 2509-2520. https://doi.org/10.1016/S0024-3205(02)01522-9
  2. Miller M, Yoneyama WM, Soneda M. 1976. Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Bacteriol. 26: 286-291. https://doi.org/10.1099/00207713-26-2-286
  3. Bubrick P. 1991. Production of astaxanthin from Haematococcus. Bioresour. Technol. 38: 237-239. https://doi.org/10.1016/0960-8524(91)90161-C
  4. Yokoyama A, Izumida H, Miki W. 1994. Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci. Biotechnol. Biochem. 58: 1842-1844. https://doi.org/10.1271/bbb.58.1842
  5. Harker M, Hirschberg J, Oren A. 1998. Paracoccus marcusii sp. nov., an orange Gram-negative coccus. Int. J. Syst. Bacteriol. 48: 543-548. https://doi.org/10.1099/00207713-48-2-543
  6. Tsubokura A, Yoneda H, Mizuta H. 1999. Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium. Int. J. Syst. Bacteriol. 49: 277-282. https://doi.org/10.1099/00207713-49-1-277
  7. Lee PC, Mijts BN, Schmidt-Dannert C. 2004. Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 65: 538-546.
  8. Lee JH, Kim YS, Choi TJ, Lee WJ, Kim YT. 2004. Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54: 1699-1702. https://doi.org/10.1099/ijs.0.63146-0
  9. Lee JH, Seo YB, Jeong SY, Nam SW, Kim YT. 2007. Functional analysis of combinations in astaxanthin biosynthesis genes from Paracoccus haeundaensis. Biotechnol. Bioprocess Eng. 12: 312-317. https://doi.org/10.1007/BF02931110
  10. Jeong TH, Ji KH, Kim YT. 2013. Overexpression and characterization of lycopene cyclase (CrtY) from marine bacterium, Paracoccus haeundaensis. J. Microbiol. Biotechnol. 23: 144-148. https://doi.org/10.4014/jmb.1208.08068
  11. Baumgartner C, Eberle C, Lauw S, Rohdich F, Eisenreich W, Bacher A, et al. 2007. Structure-based design and synthesis of the first weak non-phosphate inhibitors for IspF, an enzyme in the nonmevalonate pathway of isoprenoid biosynthesis. Helv. Chim. Acta 90: 1043-1068. https://doi.org/10.1002/hlca.200790105
  12. Eisenreich W, Rohdich F, Bacher A. 2001. Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6: 78-84.
  13. Rohmer M. 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565-574. https://doi.org/10.1039/a709175c
  14. Seemann M, Wegner P, Schunemann V, Bui BT, Wolff M, Marquet A, et al. 2005. Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut- 2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe-4S] protein. J. Biol. Inorg. Chem. 10: 131-137. https://doi.org/10.1007/s00775-004-0619-z
  15. Seo YB, Kim DE, Kim GD, Kim HW, Nam SW, Kim YT, et al. 2009. Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 59: 2769-2772. https://doi.org/10.1099/ijs.0.008482-0
  16. Jeong TH, Youn JY, Ji KH, Seo YB, Kim YT. 2014. Cloning and characterization of phosphoinositide 3-kinase ${\gamma}$ cDNA from flounder (Paralichthys olivaceus). J. Life Sci. 24: 343-351. https://doi.org/10.5352/JLS.2014.24.4.343
  17. Johnson EA, Schuman DB, An GH. 1989. Isolation of mutants with increase astaxanthin content. Appl. Environ. Microbial. 55: 116-124.
  18. McAteer S, Coulson A, McLennan N, Masters M. 2001. The lytB gene of Escherichia coli is essential and specifies a product needed for isoprenoid biosynthesis. J. Bacteriol. 183: 7403-7407. https://doi.org/10.1128/JB.183.24.7403-7407.2001