DOI QR코드

DOI QR Code

제주조릿대 잎 잔사 추출물의 항산화 및 항염 활성

Anti-oxidant and Anti-inflammatory Potentials of Sasa quelpaertensis Leaf Residue Extracts

  • 이주엽 (제주대학교 제주조릿대 RIS사업단) ;
  • 송하나 (제주대학교 제주조릿대 RIS사업단) ;
  • 고희철 (제주대학교 제주조릿대 RIS사업단) ;
  • 장미경 (제주대학교 생물학과) ;
  • 김세재 (제주대학교 제주조릿대 RIS사업단)
  • Lee, Ju-Yeop (Jeju Sasa Industry Development Agency, Jeju National University) ;
  • Song, Hana (Jeju Sasa Industry Development Agency, Jeju National University) ;
  • Ko, Hee-Chul (Jeju Sasa Industry Development Agency, Jeju National University) ;
  • Jang, Mi-Gyeong (Department of Biology, Jeju National University) ;
  • Kim, Se-Jae (Jeju Sasa Industry Development Agency, Jeju National University)
  • 투고 : 2018.01.31
  • 심사 : 2018.03.26
  • 발행 : 2018.06.30

초록

제주조릿대는 한라산 일대에서 자생하는 제주특산식물이다. 예로부터 조릿대 잎은 다양한 약리효과를 가지고 있어 전통의약에서 사용되어 왔을 뿐만 아니라 최근에는 식품 및 화장품 소재로서 활용되고 있다. 우리 연구팀은 제주조릿대 잎의 효율적인 산업적 활용을 촉진하기 위하여 열수 추출한 후 남는 잔사로부터 식물화합물을 다량으로 함유한 잔사 추출물(PRE)을 제조하는 방법을 보고한 바 있다. 본 연구는 PRE 및 분획물이 항산화 혹은 항염소재로서 활용 가능성을 평가하기 위하여 수행하였다. PRE 에틸아세테이트 분획물(EPRE)은 DPPH, ABTS, superoxide 자유기 소거활성이 우수하였고, LPS로 자극한 RAW 264.7 세포에서 활성 산소종(ROS)과 nitric oxide (NO) 생성을 효과적으로 억제하였다. EPRE는 nuclear factor E2-related factor 2 (Nrf 2)의 핵내 이동을 증가시킴으로써 heme oxygenase-1 (HO-1)의 발현을 유도하였다. HO-1 저해제인 zinc protoporphyrin (ZPP)은 EPRE에 의한 NO 생성 저해 능을 감소시키기 때문에 HO-1이 NO 생성 억제에 관여함을 알 수 있었다. 본 연구결과는 PRE와 EPRE가 항산화 및 항염 소재로서의 활용 가능성을 제시해 준다.

Sasa quelpaertensis Nakai is a native Korean plant that grows only on Mt. Halla of Jeju Island. Its leaf is used for a popular bamboo tea due to its various health-promoting properties, and it has been increasingly used as food and cosmetic ingredients. To utilize the S. quelpaertensis leaf efficiently, the preparation method for phytochemical-rich extract (PRE) using the leaf's residue was previously reported, which was produced after hot water extraction. This study was undertaken to evaluate the anti-oxidant and anti-inflammatory potential of PRE and its solvent fractions. The ethyl acetate fraction of PRE (EPRE) showed higher DPPH, ABTS, and superoxide radical scavenging activities, and it effectively inhibited intracellular reactive oxygen species (ROS) and nitric oxide (NO) production in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. EPRE also induced the expression of heme oxygenase-1 (HO-1) by increasing the level of nuclear factor E2-related factor 2 (Nrf2) in a nuclear fraction. The inhibiting effect of EPRE on LPS-induced NO production was partially reversed by the HO-1 inhibitor (zinc protoporphyrin, ZPP), suggesting that HO-1 is involved in suppressing NO production. Taken together, the results suggest that EPRE has potential as a promising anti- oxidant and anti-inflammatory agent.

키워드

참고문헌

  1. Abraham, N. G. and Kappas, A. 2008. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 60, 79-127. https://doi.org/10.1124/pr.107.07104
  2. Bae, K. 2000. The Medicinal plants of Korea, pp.565-567, Kyo-Hak Publishing Company, Seoul, Republic of Korea.
  3. Bornman, L., Baladi, S., Richard, M. J., Tyrrell, R. M. and Polla, B. S. 1999. Differential regulation and expression of stress proteins and ferritin in human monocytes. J. Cell Physiol. 178, 1-8. https://doi.org/10.1002/(SICI)1097-4652(199901)178:1<1::AID-JCP1>3.0.CO;2-Q
  4. Coleman, J. W. 2001. Nitric oxide in immunity and inflammation. Int. Immnopharmacol. 1, 1397-1406. https://doi.org/10.1016/S1567-5769(01)00086-8
  5. Hasegawa, T., Tanaka, A., Hosoda, A., Takano, F. and Ohta, T. 2008. Antioxidant C-glycosylflavones from the leaves of Sasa kurilensis var. gigantea. Phytochemistry 69, 1419-1424. https://doi.org/10.1016/j.phytochem.2007.12.003
  6. Hayashi, K., Lee, J. B., Kurosaki, Y., Nozawa, M., Asai, S., Takeshita, K. and Hayashi, T. 2014. Evaluation of fractions and isolated polysaccharides from Sasa veitchii for their preventive effects on influenza A virus infection. J. Funct. Foods 10, 25-34. https://doi.org/10.1016/j.jff.2014.05.016
  7. Hensley, K., Robinson, K. A., Gabitta, S. P., Salsman, S. and Floyd, R. A. 2000. Reactive oxygen species, cell signaling, and cell injury. Free Rad. Biol. Med. 28, 1456-1462. https://doi.org/10.1016/S0891-5849(00)00252-5
  8. Hwang, J. H., Choi, S. Y., Ko, H. C., Jang, M. G., Jin, Y. J., Kang, S. I., Park, J. G., Chung, W. S. and Kim, S. J. 2007. Anti-inflammatory effect of the hot water extract from Sasa quelpaertensis leaves. Food Sci. Biotechnol. 16, 728-733.
  9. Jang, M. G., Park, S. Y., Lee, S. R., Choi, S. Y., Hwang, J. H., Ko, H. C., Park, J. G., Chung, W. S. and Kim, S. J. 2008. Sasa quelpaertensis leaf extracts induce apoptosis in human leukemia HL-60 cells. Food Sci. Biotechnol. 17, 188-190.
  10. Jeong, Y. H., Chung, S. Y., Han, A. R., Sung, M. K., Jang, D. S., Lee, J., Kwon, Y., Lee, H. J. and Seo, E. K. 2007. P-glycoprotein inhibitory activity of two phenolic compounds, (-)-syringaresinol and tricin from Sasa borealis. Chem. Biodivers. 4, 12-16. https://doi.org/10.1002/cbdv.200790001
  11. Kang, H. and Lee, C. 2015. Sasa quelpaertensis Nakai extract suppresses porcine reproductive and respiratory syndrome virus replication and modulates virus-induced cytokine production. Arch. Virol. 160, 1977-1988. https://doi.org/10.1007/s00705-015-2469-0
  12. Kang, S. I., Shin, H. S., Kim, H. M., Hong, Y. S., Yoon, S. A., Kang, S. W., Kim, J. H., Ko, H. C. and Kim, S. J. 2012. Anti-obesity properties of a Sasa quelpaertensis extract in high-fat diet-induced obese mice. Biosci. Biotechnol. Biochem. 76, 755-761. https://doi.org/10.1271/bbb.110868
  13. Laskin, D. L. and Pendino, K. J. 1995. Macrophages and inflammatory mediators in tissue injury. Annu. Rev. Pharmacol. Toxicol. 35, 655-677. https://doi.org/10.1146/annurev.pa.35.040195.003255
  14. Lee, J. Y., Ko, H. C., Jang, M. K. and Kim, S. J. 2016. Preparation and characterization of phytochemical-rich extract from Sasa quelpaertensis leaf. J. Life Sci. 26, 1330-1335. https://doi.org/10.5352/JLS.2016.26.11.1330
  15. Li, L., Grenard, P., Nhieu, J. T., Julien, B., Mallat, A., Habib, A. and Lotersztajn, S. 2003. Heme oxygenase-1 is an antifibrogenic protein in human hepatic myofibroblasts. Gastroenterology 125, 460-469. https://doi.org/10.1016/S0016-5085(03)00906-5
  16. Lin, H. Y., Juan, S. H., Shen, S. C., Hsu, F. L. and Chen, Y.C. 2003. Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. Biochem. Pharmacol. 66, 1821-1832. https://doi.org/10.1016/S0006-2952(03)00422-2
  17. Loboda, A. Jazwa, A., Grochot-Przeczek, A., Rutkowski, A. J., Cisowski, J., Agarwal, A., Jozkowicz, A. and Dulak, J. 2008. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 10, 1767-1812. https://doi.org/10.1089/ars.2008.2043
  18. Okabe, S., Takeuchi, K., Takagi, K. and Shibata, M. 1975. Stimulatory effect of the water extract of bamboo grass (Folin solution) on gastric acid secretion in pylorus-ligated rats. Jpn. J. Pharmacol. 25, 608-609 https://doi.org/10.1254/jjp.25.608
  19. Otterbein, L. E. and Choi, A. M. 2000. Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, 1029-1037. https://doi.org/10.1152/ajplung.2000.279.6.L1029
  20. Ren, M., Reilly, R. T. and Sacchi, N. 2004. Sasa health exerts a protective effect on Her2/NeuN mammary tumorigenesis. Anticancer Res. 24, 2879-2884
  21. Ryter, S. W., Otterbein, L. E., Morse, D. and Choi, A. M. 2002. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol. Cell Biochem. 235, 249-263.
  22. Sies, H. 2015. Oxidative stress: a concept in redox biology and medicine. Redox. Biol. 4, 180-183. https://doi.org/10.1016/j.redox.2015.01.002
  23. Srisook, K., Kim, C. and Cha, Y. N. 2005. Molecular mechanisms involved in enhancing HO-1 expression: de-repression by heme and activation by Nrf2, the "one-two" punch. Antioxid. Redox Signal. 7, 1674-1687. https://doi.org/10.1089/ars.2005.7.1674
  24. Tamion, F., Richard, V., Bonmarchand, G., Leroy, J., Lebreton, J. P. and Thuillez, C. 2001. Induction of heme-oxygenase-1 prevents the systemic responses to hemorrhagic shock. Am. J. Respir. Crit. Care Med. 164, 1933-1938. https://doi.org/10.1164/ajrccm.164.10.2010074
  25. Wojcik, M., Burzynska-Pedziwiatr, I. and Wozniak, L. A. 2010. A review of natural and synthetic antioxidants important for health and longevity. Curr. Med. Chem. 17, 3262-3688. https://doi.org/10.2174/092986710792231950
  26. Yoon, S. A., Kang, S. I., Shin, H. S., Kang, S. W., Kim, J. H., Ko, H. C. and Kim, S. J., 2013. p-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochem. Biophys. Res. Commun. 432, 553-557. https://doi.org/10.1016/j.bbrc.2013.02.067