DOI QR코드

DOI QR Code

Density Functional Theory Study of Separated Adsorption of O2 and CO on Pt@X(X = Pd, Ru, Rh, Au, or Ag) Bimetallic Nanoparticles

Pt 기반 이원계 나노입자의 산소 및 일산화탄소 흡착 특성에 대한 전자밀도함수이론 연구

  • An, Hyesung (Department of Materials Science and Engineering, Chungnam National University) ;
  • Ha, Hyunwoo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoo, Mi (Department of Materials Science and Engineering, Chungnam National University) ;
  • Choi, Hyuck (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyun You (Department of Materials Science and Engineering, Chungnam National University)
  • 안혜성 (충남대학교 신소재공학과) ;
  • 하현우 (충남대학교 신소재공학과) ;
  • 유미 (충남대학교 신소재공학과) ;
  • 최혁 (충남대학교 신소재공학과) ;
  • 김현유 (충남대학교 신소재공학과)
  • Received : 2018.04.09
  • Accepted : 2018.06.05
  • Published : 2018.06.27

Abstract

We perform density functional theory calculations to study the CO and $O_2$ adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and $O_2$, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and $O_2$ binding energy values, which are required for facile CO oxidation. On the other hand, the $O_2$ binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than $O_2$. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Pt-based CO-tolerant CO oxidation catalyst.

Keywords

References

  1. W. Yu, M. D. Porosoff, and J. G. Chen, Chem. Rev., 112, 5780 (2012). https://doi.org/10.1021/cr300096b
  2. J. Wang, H. Chen, Z. Hu, M. Yao, and Y. Li, Catal. Rev., 57, 79 (2015). https://doi.org/10.1080/01614940.2014.977059
  3. J. Greeley and M. Mavrikakis, Nat. Mater., 3, 810 (2004). https://doi.org/10.1038/nmat1223
  4. J. K. Norskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Nat. Chem., 1, 37 (2009). https://doi.org/10.1038/nchem.121
  5. S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, Nat. Mater., 8, 126 (2008).
  6. X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, and Y. Huang, Science, 348, 1230 (2015). https://doi.org/10.1126/science.aaa8765
  7. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, and N. M. Markovi , Science, 315, 493 (2007). https://doi.org/10.1126/science.1135941
  8. T. Engel and G. Ertl, in Advances in Catalysis, Vol. 28, pp. 1-78, edited by D. D. Eley, H. Pines, and P. B. Weez, Academic Press (1979).
  9. S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, Nat. Mater., 7, 333 (2008). https://doi.org/10.1038/nmat2156
  10. S. B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested, and S. Helveg, J. Catal., 281, 147 (2011). https://doi.org/10.1016/j.jcat.2011.04.011
  11. M. Wakisaka, S. Mitsui, Y. Hirose, K. Kawashima, H. Uchida, and M. Watanabe, J. Phys. Chem. B, 110, 23489 (2006). https://doi.org/10.1021/jp0653510
  12. K. Shin, L. Zhang, H. An, H. Ha, M. Yoo, H. M. Lee, G. Henkelman, and H. Y. Kim, Nanoscale, 9, 5244 (2017). https://doi.org/10.1039/C7NR01382E
  13. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  14. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992). https://doi.org/10.1103/PhysRevB.45.13244
  15. P. E. Blochl, Phys. Rev. B, 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  16. E. V. Carino, H. Y. Kim, G. Henkelman, and R. M. Crooks, J. Am. Chem. Soc., 134, 4153 (2012). https://doi.org/10.1021/ja209115e
  17. H. Y. Kim and G. Henkelman, ACS Catal., 3, 2541 (2013). https://doi.org/10.1021/cs4006259
  18. H. Y. Kim, H. M. Lee and G. Henkelman, J. Am. Chem. Soc., 134, 1560 (2012). https://doi.org/10.1021/ja207510v
  19. H. Ha, H. An, M. Yoo, J. Lee and H. Y. Kim, J. Phys. Chem. C, 121, 26895 (2017). https://doi.org/10.1021/acs.jpcc.7b09780
  20. H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 4, 216 (2013). https://doi.org/10.1021/jz301778b