DOI QR코드

DOI QR Code

The Formation of Microcrystalline SiGe Film Using a Remote Plasma Enhanced Chemical Vapor Deposition

원격 플라즈마 화학기상 증착법으로 성장된 미세 결정화된 SiGe 박막 형성

  • Kim, Doyoung (School of Electrical and Electronics Engineering, Ulsan College)
  • 김도영 (울산과학대학교 전기전자공학부)
  • Received : 2018.05.07
  • Accepted : 2018.05.18
  • Published : 2018.07.01

Abstract

SiGe thin films were deposited by remote plasma enhanced chemical vapor deposition (RPE-CVD) at $400^{\circ}C$ using $SiH_4$ or $SiCl_4$ and $GeCl_4$ as the source of Si and Ge, respectively. The growth rate and the degree of crystallinity of the fabricated films were characterized by scanning electron microscopy and Raman analysis, respectively. The optical and electrical properties of SiGe films fabricated using $SiCl_4$ and $SiH_4$ source were comparatively studied. SiGe films deposited using $SiCl_4$ source showed a lower growth rate and higher crystallinity than those deposited using $SiH_4$ source. Ultraviolet and visible spectroscopy measurement showed that the optical band gap of SiGe is in the range of 0.88~1.22 eV.

Keywords

References

  1. H. Meiling and R.E.I. Schropp, Appl. Phys. Lett., 70, 2681 (1987). [DOI: https://doi.org/10.1063/1.118992]
  2. R. A. Street, D. K. Biegelsen, and J. C. Knights, Phys. Rev. B, 24, 969 (1981). [DOI: https://doi.org/10.1103/PhysRevB.24.969]
  3. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, Sol. Energy Mater. Sol. Cells, 62, 97 (2000). [DOI: https://doi.org/ 10.1016/S0927-0248(99)00140-3]
  4. M. Faraji, S. Gokhale, S. M. Choudhari, and M. G. Takwale, Appl. Phys. Lett., 60, 3289 (1992). [DOI: https://doi.org/10.1063/ 1.106722]
  5. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, Appl. Phys. Lett., 89, 033506 (2006). [DOI: https:// doi.org/10.1063/1.2227629]
  6. K. Ishizaki, A. Motohira, M. De Zoysa, Y. Tanaka, T. Umeda, and S. Noda, IEEE J. Photovoltaics, 7, 950 (2017). [DOI: https://doi.org/10.1109/JPHOTOV.2017.2695524]
  7. G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, and W. J. Wang, J. Alloys Compd., 658, 543 (2016). [DOI: https:// doi.org/10.1016/j.jallcom.2015.10.235]
  8. A. S. Gudovskikh, A. V. Uvarov, I. A. Morozov, A. I. Baranov, D. A. Kudryashov, K. S. Zelentsov, A. S. Bukatin, and K. P. Kotlyar, J. Vac. Sci. Technol., A, 36, 02D408 (2018). [DOI: https://doi.org/10.1116/1.5018259]
  9. X. Zhao, D. Li, T. Zhang, B. Conrad, L. Wang, A. H. Soeriyadi, J. Han, M. Diaz, A. Lochtefeld, A. Gerger, I. Perez-Wurfl, and A. Barnett, Sol. Energy Mater. Sol. Cells, 159, 86 (2017). [DOI: https://doi.org/10.1016/j.solmat.2016.08.037]
  10. A. Fedala, C. Simon, N. Coulon, T. Mohammed-Brahim, M. Abdeslam, and A. C. Chami, Phys. Status Solidi C, 7, 762 (2010). [DOI: https://doi.org/10.1002/pssc.200982791]
  11. M. Beaudoin, M. Meunier, and C. J. Arsenault, Phys. Rev. B, 47, 2197 (1993). [DOI: https://doi.org/10.1103/PhysRevB. 47.2197]