DOI QR코드

DOI QR Code

송풍량이 음식물쓰레기 발효건조에 미치는 영향

Effects of Air-flow Rate on Bio-drying of Food waste

  • 유정숙 (한경대학교 바이오가스연구센터) ;
  • 윤영만 (한경대학교 바이오가스연구센터)
  • 투고 : 2018.04.11
  • 심사 : 2018.06.07
  • 발행 : 2018.06.30

초록

본 연구는 음식물쓰레기의 발효건조를 위한 최적 운전조건을 도출하기 위하여 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$의 송풍조건에서 발효건조 회분식 반응기를 20일간 운전하였으며, Modified Gompertz 모델을 이용하여 발효건조 기간 중 반응기내에서의 유기물 분해반응속도를 분석하였다. 유기물 분해 반응속도 분석에서 최대 유기물 분해량 (P)은 송풍량 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$에서 각각 2.31, 2.52, 2.27, 1.88 kg이었으며, 최대 유기물 분해속도 ($R_m$)는 송풍량 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$에서 각각 0.33, 0.45, 0.28, 0.18 kg/day를 보여 송풍량 $1.00L/min{\cdot}kg$에서 우수한 유기물 분해효율을 보였다. 발효건조 반응기의 지체성장시간 (${\lambda}$)은 송풍량 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$에서 각각 2.10, 1.48, 1.15, 1.06 일로 나타나 $0.75L/min{\cdot}kg$의 적은 송풍조건에서 가장 긴 지체성장시간을 보여 송풍량의 증가는 지체성장시간을 단축시키는 것으로 나타났다. 음식물쓰레기 발효건조 반응기의 운전에서 수분 제거율은 발효건조 반응기 운전 초기에서 중기로 갈수록 송풍량 증가와 함께 증가하다가 발효건조 반응기 운전 말기에는 송풍량 $1.00L/min{\cdot}kg$에서 가장 높은 수분 제거율을 보여 발효건조의 최적 송풍조건은 $1.00L/min{\cdot}kg$으로 나타났다.

This study was carried out for 20 days in a bio-drying batch reactor under the blowing conditions of 0.75, 1.00, 1.25, and $1.50L/min{\cdot}kg$ in order to optimize the operating conditions for the bio-drying of food wastes. The decomposition rate of organic matter during the bio-drying operation period was analyzed using modified Gompertz model. The maximum organic degradation (P) was 2.31, 2.52, 2.27 and 1.88 kg at air flow rates of 0.75, 1.00, 1.25 and $1.50L/min{\cdot}kg$, and the maximum organic degradation rate was 0.33, 0.45, 0.28, and 0.18 kg/day at 1.00, 1.25 and $1.50L/min{\cdot}kg$, respectively, showing excellent organic decomposition efficiency at a air flow rate of $1.00L/min{\cdot}kg$. The lag growth phase time (${\lambda}$) of the bio-drying reactor was 2.10, 1.48, 1.15, and 1.06 days at 0.75, 1.00, 1.25 and $1.50L/min{\cdot}kg$, respectively. The water removal rate in the operation of bio-drying reactor of food waste increased with the increase of air flow rate from the early stage of bio-drying to the middle stage, and the highest water removal rate was observed at the air flow rate of $1.00L/min{\cdot}kg$ at the end of bio-drying. The optimum air flow rate condition of bio-drying reactor was $1.00L/min{\cdot}kg$.

키워드

참고문헌

  1. Ministry of Environment, "The reuse and reduction of food waste", (2017).
  2. Haug, R. T., "The practical handbook of compost engineering", CRC Publishers, Ltd., Boca Raton, Florida, USA. (1993).
  3. Morin, S., Barrington, S., Adhikari, B. and Gregoire, B., "The development of an urban composter", In: Proceedings from the September 2004 Technical Meeting, Composting Council of Canada, Toronto, Ontario. (2004).
  4. Chang, K. W., Lee, I. B. and Lim, J. S., "Changes of physico-chemical properties during the composting of korean food waste", J. of KOWREC, 3(1), pp. 3-11. (1995).
  5. Pace, M. G., Miller, B. E. and Farrell-Poe, K. L., "The Composting Process". Utah State University Extension, Logan, Utah, USA. (1995).
  6. Won, J. S., Lee, S. M., Ra, J. D., Seo, G. T. and Jang, C. M., "Evaluation of a module-type drying apparatus for the composting of food waste", J. of Korea Society of Waste Management, 32(2), pp. 200-206. (2015). https://doi.org/10.9786/kswm.2015.32.2.200
  7. Park, J. R., Bae, S. J., Lee, H. H., Hong, S. C., Jang, S. H. and Lee, D. H., "Recent trends in bio-drying technology and physico-chemical characteristics of residue from SRF production facilities", J. of Korea Society of Waste Management, 32(5), pp. 415-428. (2015). https://doi.org/10.9786/kswm.2015.32.5.415
  8. Cai, L., Chen, T. B., Gao, D., Zheng, G. D., Liu, H. T. and Pan, T. H., "Influence of forced air volume on water evaporation during sewage sludge bio-drying", Water Res. 47(13), pp. 4767-4773. (2013). https://doi.org/10.1016/j.watres.2013.03.048
  9. Seo, J. Y., Park, J. W. and Lee, Y. H., "Effects of operating temperatures on decomposition and physico-chemical properties of food wastes", J. of KOWREC, 8(1), pp. 97-102. (2000).
  10. Adhikari, B. K., Barrington, S., Martinez, J. and King, S., "Effectiveness of three bulking agents for food waste composting", Waste Management, 29, pp. 197-203. (2009). https://doi.org/10.1016/j.wasman.2008.04.001
  11. Zhang, D. Q., He, P. J., Jin, T. F. and Shao, L. M., "Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation", Bioresource Technology, 99, pp. 8796-8802. (2008). https://doi.org/10.1016/j.biortech.2008.04.046
  12. Kim, J. D., Park, J. S., In, B. H. and Kim, D., Namkoong, W., "Evaluation of pilot-scale in-vessel composting for food waste treatment", Journal of Hazardous Materials, 154, pp. 272-277. (2008). https://doi.org/10.1016/j.jhazmat.2007.10.023
  13. Kwag, J. H., Kim. J. H., Jeong. K. H., Cho, S. H., Ahn, H. K., Choi, D. Y., Jeong, M. S., Lee, S. C., Kang. H. S. and Ra, C. S., "A study on the characteristics using pig manure under aerobic air flow rate during composting", J. Lives. Hous. & Env., 17(2), pp. 131-138. (2011).
  14. Cai, L., Chen, T. B., Gao, D. and Yu, J., "Bacterial communities and their association with the bio-drying of sewage sludge", Water Research, 90, pp. 44-51. (2016). https://doi.org/10.1016/j.watres.2015.12.026
  15. Jung, J. H. and An, J. H., "The influence of air feed rate on the composting process of food waste", J. of KSEE, 23(6), pp. 1013-1021. (2001).