DOI QR코드

DOI QR Code

Ultrasonic and Alkaline Pre-treatments of Waste Activated Sludge for Enhancing Anaerobic Digestion

혐기성 소화를 위한 폐활성슬러지의 초음파와 알칼리 전처리

  • Park, In Geun (Division of Civil, Environmental and Energy Engineering, The University of Suwon) ;
  • Son, Han Hyung (Division of Civil, Environmental and Energy Engineering, The University of Suwon) ;
  • Lee, Chae Young (Division of Civil, Environmental and Energy Engineering, The University of Suwon)
  • 박인근 (수원대학교 건설환경에너지공학부) ;
  • 손한형 (수원대학교 건설환경에너지공학부) ;
  • 이채영 (수원대학교 건설환경에너지공학부)
  • Received : 2018.05.24
  • Accepted : 2018.06.07
  • Published : 2018.06.30

Abstract

The hydrolysis of organic solid waste, such as sludge, is the rate-limiting step of the anaerobic digestion. The longer rate-limiting step lead to decrease of treatment efficiency and increase hydraulic retention time and anaerobic digester. Therefore, the pre-treatment has been applied for accelerating the hydrolysis step. This study was investigated the effects of pre-treatment of waste activated sludge using ultrasonic and alkaline integrated treatment simultaneously. The results showed the cumulative methane production and the methane production rate increased while the lag phase decreased. Therefore ultrasonic and alkaline integrated pre-treatment of waste activated sludge resulted in acceleration of hydrolysis step in anaerobic digestion.

가수분해반응에서 율속 단계가 되어 수리학적 체류시간이 길어지고 처리 효율이 떨어지며 불안정한 처리 및 대규모 소화조 크기에 문제가 발생한다. 따라서 처리효율을 높이기 위해서는 하수 슬러지를 방해하는 요소들에 대해 혐기성 소화를 최소화하기 위한 전처리가 필요하며, 본 연구에서는 폐수 처리공정에서 초음파 및 알칼리 처리를 이용한 하수 슬러지의 분해 및 전처리효과를 검토하였다. 초음파 및 알칼리 전처리를 사용한 폐활성슬러지에 대한 혐기성 생분해도 분석결과 지체기의 시간이 감소하는 동안 누적 메탄 생산 및 메탄 생성 속도가 증가하였다. 따라서 초음파 및 알칼리 전처리를 이용한 하수 슬러지의 전처리는 율속단계를 작용하는 가수분해단계에서 지체기를 포함한 반응 시간을 줄이고 메탄 생산 속도 및 최종 메탄 수율을 증가시켜 효과적으로 가속화할 수 있다.

Keywords

References

  1. Ministry of Environment, "The status of public sewage treatment plant" (2015). (in Korean).
  2. Korea Water and Wastewater Works Association, "A study on volume reduction of sewage sludge" (2011). (in Korean).
  3. Neumann, P., Gonzalez. Z. and Vidal, G., "Sequential ultrasound and low-temperature thermal pretreatment: Process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion", Bioresource Technology, 234, pp. 178-187 (2017). https://doi.org/10.1016/j.biortech.2017.03.029
  4. Veluchamy, C. and Kalamdhad, A. S., "Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review", Bioresource Technology, 245, pp. 1206-1219. (2017). https://doi.org/10.1016/j.biortech.2017.08.179
  5. Ding, H. H., Chang, S. and Liu, Y., "Biological hydrolysis pretreatment on secondary sludge: Enhancement of anaerobic digestion and mechanism study", Bioresource Technology, 244, pp. 989-995. (2017). https://doi.org/10.1016/j.biortech.2017.08.064
  6. Chen, X., Xiang, X., Dai, R., Wang, Y. and Ma, P., "Effect of low temperature of thermal pretreatment on anaerobic digestion of textile dyeing sludge", Bioresource Technology, 243, pp. 426-432. (2017). https://doi.org/10.1016/j.biortech.2017.06.138
  7. Han, Y., Zhou, Y., Peng, D., Yao, Q., Li, H. and Qu, Q., "Influence of thermal hydrolysis pretreatment on organic transformation characteristics of high solid anaerobic digestion", Bioresource Technology, 244, pp. 836-843. (2017). https://doi.org/10.1016/j.biortech.2017.07.166
  8. Li, H., Li, C., Liu, W. and Zou, S., "Optimized alkaline pretreatment of sludge before and anaerobic digestion", Bioresource Technology, 123, pp. 189-194. (2012). https://doi.org/10.1016/j.biortech.2012.08.017
  9. Chu, C. P., Lee, D. J. and Chang, B. V., "Weak ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids", Water Research, 36, pp. 2681-2688. (2002). https://doi.org/10.1016/S0043-1354(01)00515-2
  10. Neyens, E., Baeyens, J., Dewil, R. and Heyder, B. D., "Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering", Journal of Hazardous Materials, 106, pp. 83-92. (2004). https://doi.org/10.1016/j.jhazmat.2003.11.014
  11. Kim, J. S., Lee, Y. Y. and Kim, T. H., "A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass", Bioresource Technology, 199, pp. 42-48. (2016). https://doi.org/10.1016/j.biortech.2015.08.085
  12. Lin, J. G., Chang, C. N. and Chang, S. C., "Enhancement of anaerobic sludge digestion of waste activated sludge by alkaline solubilization", Bioresource Technology, 62, pp. 85-90. (1997). https://doi.org/10.1016/S0960-8524(97)00121-1
  13. Bougrier, C., Carrere, H. and Delgenes, J. P., "Solubilisation of waste activated sludge by ultrasonic treatment", Chemical Engineering Journal, 106, pp. 163-169. (2005). https://doi.org/10.1016/j.cej.2004.11.013
  14. APHA-AWWA-WEF, "Standard Methods for the Examination of Water and Wastewater", 18th edition, Am. Public Health Assoc, Washington, D. C, USA (2005).
  15. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith F., "Colormetric method for determination of sugars and related substances", Analytical Chemistry, 28(3), pp. 350-356. (1956). https://doi.org/10.1021/ac60111a017
  16. Sapan, C. V., Lundblad R. L. and Price N. C., "Colorimetric protein assay techniques", Biotechnology and Applied Biochemistry, 29, pp. 99-108. (1999).
  17. Li, H., Jin, Y., Mahar, R. B., Wang, Z. and Nie, Y., "Effects and model of alkaline waste activated sludge treatment", Bioresource Technology, 99, pp. 5140-5144. (2008). https://doi.org/10.1016/j.biortech.2007.09.019
  18. Gonze, E., Pillot, S., Valette, E., Gonthier, Y. and Bernis, A., "Ultrasonic treatment of an anerobic activated sludge in a batch reactor", Chemical Engineering and Processing, 42, pp. 965-975. (2000).
  19. Shin, H. S., Lee, C. Y. and Kang K, H., "Anaerobic biodegradability of Leachates Generated at Landfill Age", Korea Organic Resources Recycling Association, 8, pp. 90-96. (2000).
  20. Chu, C. P., Chang, B., Liao, G. S., Jean, D. S. and Lee, D. J., "Observations on changes in ultrasonically treated waste-activated sludge", Water Research, 35(4), pp. 1038-1046. (2001). https://doi.org/10.1016/S0043-1354(00)00338-9
  21. Neyens, E., Baeyens, J. and Creemers, C., "Alkaline thermal sludge hydrolysis", Journal of Hazardous Materials, 97, pp. 295-314. (2003). https://doi.org/10.1016/S0304-3894(02)00286-8