DOI QR코드

DOI QR Code

눈개승마속(장미과) 잎 표피 미세형태학적 형질 및 분류학적 유용성

The taxonomic implication of leaf micromorphological characteristics in the genus Aruncus (Rosaceae)

  • 옥민경 (경희대학교이과대학생물학과) ;
  • 송준호 (경희대학교이과대학생물학과) ;
  • 홍석표 (경희대학교이과대학생물학과)
  • OAK, Min-Kyeong (Laboratory of Plant Systematics, Department of Biology, Kyung Hee University) ;
  • SONG, Jun-Ho (Laboratory of Plant Systematics, Department of Biology, Kyung Hee University) ;
  • HONG, Suk-Pyo (Laboratory of Plant Systematics, Department of Biology, Kyung Hee University)
  • 투고 : 2018.02.22
  • 심사 : 2018.06.14
  • 발행 : 2018.06.30

초록

눈개승마속 2종 5변종등 7분류군의 잎 표피 미세형태학적 형질에 대한 분류학적 유용성을 검토하고자 주사전자현미경(scanning electron microscopy)을 이용하여 관찰하고, 기재하였다. 본 속에 속하는 모든 분류군에서 기공복합체(stomatal complex)는 배축면에만 기공이 존재하는 이면기공엽(hypostomatic type)이었으며, 표피세포는 양면 모두에서 동일하게 파상형(undulate)의 수층벽(anticlinal wall), 매끈하고, 편평한 병층벽(periclinal wall)이 나타났다. 기공복합체의 크기는 $8.95-21.97{\times}7.50-16.99{\mu}m$로 분류군마다 다소 차이를 보이는데, Aruncus dioicus var. astilboides (평균 $18.01{\times}13.47{\mu}m$)가 가장 크게 나타났으며, A. gombalanus (평균 $11.11{\times}8.94{\mu}m$)에서 가장 작게 나타났다. 기공복합체의 형태는 모두 불규칙형(anomocytic)으로 확인되었다. 기공의 빈도는 면적당($0.05mm^2$) 평균 27.54개로, A. gombalanus에서 가장 높은 빈도(60.4개/$0.05mm^2$), A. dioicus var. acuminatus에서 가장 낮은 빈도(11.6개/$0.05mm^2$)로 관찰되었다. 연구된 분류군에서 나타나는 모용의 종류는 크게 2종류로 짧은 자루의 두상선모(short stalked capitate glandular trichome)와 비선모(non-glandular trichomes)가 확인되었고, 비선모는 부세포(subsidiary cells)의 유무와 발달 정도에 따라 세 가지 타입으로 구별되었다. 불규칙형의 기공형태와 이면기공엽, 두상선모의 분포는 본 속을 인식하는 주요형질로 판단되었으며, 기공의 크기와 빈도, 표피세포의 미세형태, 모용의 종류와 분포양상 등은 일부 분류군을 구별하는 인식형질로 유용한 것으로 나타났다. 잎 표피 내 다양한 미세형태학적 형질은 외부형태학적 형질과 더불어 본 속의 분류학적 개정을 위해 보다 유용한 정보를 제공할 것이다.

A comparative study of leaf epidermal microstructures in genus Aruncus (two species, five varieties) was carried out using scanning electron microscopy in order to evaluate their significance in terms of taxonomy. All of the leaves of the taxa studied here were amphistomatic with undulate anticlinal walls, and smooth and flat periclinal walls on both surfaces. The size range of the stomata complex is $8.95-21.97{\times}7.50-16.99{\mu}m$: the largest one was found in Aruncus dioicus var. astilboides (average $18.01{\times}13.47{\mu}m$) and the smallest was measured and determined to be A. gombalanus (average $11.11{\times}8.94{\mu}m$). An anomocytic stomata complex was found in all of the studied taxa. The stomatal frequency on average was $27.54/0.05mm^2$; it is highest in A. gombalanus ($60.4/0.05mm^2$) and lowest in A. dioicus var. acuminatus ($11.6/0.05mm^2$). Two types (short stalked capitate glandular trichome and non-glandular trichome) of trichomes are found in the leaves. The non-glandular trichome was divided into three types based on the presence and degree of development of subsidiary cells. Anomocytic stomata of the hypostomatic type and the distribution pattern of capitate glandular trichomes were the major characters in this genus. The stomata size and frequency, the epidermal cell structure, the trichome type and the distribution pattern may have diagnostic importance among the taxa in the genus. Our leaf micromorphological results provide useful information for the taxonomic revision of the genus Aruncus.

키워드

참고문헌

  1. Anil Kumar, V. S. and K. Murugan. 2013. Taxonomic significance of foliar micromorphology and their systematic relevance in the genus Solanum (Solanaceae). In Prospects in Bioscience: Addressing the Issues. Sabu A. and A. Augustine (eds.), Springer, Kolkata. Pp. 343-349.
  2. Barthlott, W. 1981. Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects. Nordic Journal of Botany 1: 345-355. https://doi.org/10.1111/j.1756-1051.1981.tb00704.x
  3. Beaulieu, J. M., I. J. Leitch, S. Patel, A. Pendharkar and C. A. Knight. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975-986. https://doi.org/10.1111/j.1469-8137.2008.02528.x
  4. Capellades, M., R. Fontarnau, C. Carulla and P. Debergh. 1990. Environment influences anatomy of stomata and epidermal cells in tissue-cultured Rosa multiflora. Journal of the American Society for Horticultural Science 115: 141-145.
  5. Chang, C.-S., H. Kim and K. S. Chang. 2014. Provisional Checklist of Vascular Plants for the Korea Peninsula Flora (KPF). Designpost, Seoul, 561 pp.
  6. Deng, M., A. Hipp, Y.-G. Song, Q.-S. Li, A. Coombes and A. Cotton. 2014. Leaf epidermal features of Quercus subgenus Cyclobalanopsis (Fagaceae) and their systematic significance. Botanical Journal of the Linnean Society 176: 224-259. https://doi.org/10.1111/boj.12207
  7. Eriksen, B. and B. A. Yurtsev. 1999. Hair types in Potentilla sect. Niveae (Rosaceae) and related taxa, terminology and systematic distribution. Norske Videnskaps-Akademi Matematisk-Naturvidenskapelig Klasse, Skrifter, Ny Serie 38: 201-221.
  8. Faghir, M. B., F. Attar, A. Farazmand, B. Ertter and B. Eriksen. 2010. Leaf indumentum types in Potentilla (Rosaceae) and related genera in Iran. Acta Societatis Botanicorum Poloniae 79: 139-145.
  9. Faghir, M. B., K. K. Chaichi and R. S. Shahvon. 2014. Foliar epidermis micromorphology of the genus Alchemilla (Rosaceae) in Iran. Phytologia Balcanica 20: 215-225.
  10. Fernald, M. L. 1939. IV. New species, varieties and transfers. Rhodora 41: 423-461.
  11. Ganeva, T. and K. Uzunova. 2010. Comparative leaf epidermis study in species of genus Malus Mill. (Rosaceae). Botanica Serbica 34: 45-49.
  12. Gu, C. and C. Alexander. 2003 Aruncus L. In Flora of China. Vol. 9. Pittosporaceae through Connaraceae. Wu, Z. Y., P. H. Raven and D. Y. Hong (eds.), Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, MO. Pp. 74-75.
  13. Hara, H. 1955. Critical notes on some type specimens of East-Asiatic plants in foreign herbaria (2). Journal of Japanese Botany 30: 65-72.
  14. Heo, K. I., S. R. Lee, M. H. Yoo, S. T. Lee, Y. Kwon, S. Y. Lim, S. H. Kim and S. C. Kim. 2013. The taxonomic implication of trichome and epicuticular waxes in tribe Potentilleae (Rosaceae) in Korea. Korean Journal of Plant Taxonomy 43: 106-117. (in Korean) https://doi.org/10.11110/kjpt.2013.43.2.106
  15. Hetherington, A. M. and F. I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901-908. https://doi.org/10.1038/nature01843
  16. Hutchinson, J. 1964. The Genera of Flowering Plants. Vol. 1. Dicotyledons. Clarendon Press, Oxford, 510 pp.
  17. Ikeda, H. 2001. Aruncus L. In Flora of Japan. Vol. IIb. Angiospermae; Dicotyledoneae; Archichlamideae (b). Iwatsuki, K., T. Yamazaki, D. E. Boufford and H. Ohba (eds.), Kodansha, Ltd., Tokyo. Pp. 100-102.
  18. Kalkman, C. 2004. Rosaceae. In The Families and Genera of Vascular Plants. Vol. 6. Flowering Plants, Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales. Kubitzki, K. (ed.), Springer-Verlag, Berlin. Pp. 343-386.
  19. Kang, Y., F. Jabbour, S. Cao, Y. Wang, J. Guo and J. Huang. 2017. Leaf epidermal features of Chinese Stephania Lour. (Menispermaceae) and their systematic significance. Kew Bulletin 72: 26. https://doi.org/10.1007/s12225-017-9697-2
  20. Kolodziejek, J. 2008. Hair types in Polish selected taxa of Potentilla subsect. Collinae (Rosaceae). Acta Societatis Botanicorum Poloniae 77: 217-224.
  21. Lee, S. T. 2007. Aruncus L. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.), Academy Publishing Co., Seoul. Pp. 541-542.
  22. Lee, T. B. 1980. Illustrated Flora of Korea. Hyangmunsa, Seoul, 791 pp. (in Korean)
  23. Mellichamp, T. L. 2014. Aruncus L. In Flora of North America: North of Mexico. Vol. 9. Magnoliophyta: Picramniaceae to Rosaceae. Flora of North America Editorial Committee (ed.), Oxford University Press, New York and Oxford. Pp. 422-424.
  24. Nakai, T. 1912. Notulae ad Plantas Japoniae et Coreae VIII. The Botanical Magazine 26: 321-328. https://doi.org/10.15281/jplantres1887.26.311_321
  25. Ok, M.-K. and S.-P. Hong. 2015. Pollen morphology of the genus Aruncus L. (Rosaceae). Korean Journal of Plant Taxonomy 45: 323-331. https://doi.org/10.11110/kjpt.2015.45.4.323
  26. Pathak, M. K. and M. Bhaumik. 2012. Aruncus gombalanus (Rosaceae): a new record for India. Rheedea 22: 133-135.
  27. Rydberg, P. A. 1908. Rosaceae. In North American Flora. Vol. 22. Part 3. Britton, N. L., F. V. Coville, H. A. Gleason, J. K. Small, C. L. Pollard and P. A. Rydberg (eds.), The New York Botanical Garden, New York. Pp. 239-292.
  28. Roy, B. A., M. L. Stanton and S. M. Eppley. 1999. Effects of environmental stress on leaf hair density and consequences for selection. Journal of Evolutionary Biology 12: 1089-1103. https://doi.org/10.1046/j.1420-9101.1999.00107.x
  29. Song, J.-H. and S.-P. Hong. 2016. Taxonomic significance of the leaf micromorphology in the tribe Sorbarieae (Spiraeoideae: Rosaceae). Korean Journal of Plant Taxonomy 46: 199-212. (in Korean) https://doi.org/10.11110/kjpt.2016.46.2.199
  30. Song, J.-H. and S.-P. Hong. 2017. The systematic implications of leaf micromorphological characteristics in the tribe Neillieae (Spiraeoideae, Rosaceae). Korean Journal of Plant Taxonomy 47: 222-235. (in Korean) https://doi.org/10.11110/kjpt.2017.47.3.222
  31. Stace, C. A. 1965. Cuticular studies as an aid to plant taxonomy. Bulletin of the British Museum (Natural History) Botany 4: 3-78.
  32. Stace, C. A. 1984. The taxonomic importance of the leaf surface. In Current Concepts in Plant Taxonomy. Heywood, V. H. and D. M. Moore (eds.), Academic Press, London. Pp. 67-93.
  33. Sunami, T., K. Ohga, M. Muroi, H. Hayakawa, J. Yokoyama, K. Ito, S. Tebayashi, R. Arakawa and T. Fukuda. 2012. Comparative analyses of hairless-leaf and hairy-leaf type individuals in Aster hispidus var. insularis (Asteraceae). Journal of Plant Studies 2: 1-6.
  34. Tarnavschi, I. and M. Pauca Comanescu. 1972. Morphological variation of leaf epidermis depending on station in several herbaceous species. Revue Roumaine de Biologie Serie de Botanique 7: 299-309.
  35. Theobald, W. L., J. L. Krahulik and R. C. Rollins. 1979. Trichome description and classification. In Anatomy of the Dicotyledons. 2nd ed. Vol. I. Metcalfe, C. R. and L. Chalk (eds.), Clarendon Press, Oxford. Pp. 40-53.
  36. Thiers, B. 2017. (continuously updated) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. Retrieved Jul. 10, 2017, available from http://sweetgum.nybg.org/ih/.
  37. Tomaszewski, D., J. Zielinski and M. Gawlak. 2014. Foliar indumentum in central-European Rubus species (Rosaceae) and its contribution to the systematics of the group. Nordic Journal of Botany 32: 1-10. https://doi.org/10.1111/j.1756-1051.2013.00116.x
  38. Tutin, T. G. 1968. Aruncus L. In Flora Europaea. Vol. 2. Rosaceae to Umbelliferae. Tutin, T. G., V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters and D. A. Webb (eds.), Cambridge University Press, Cambridge. Pp. 3-6.
  39. Wilkinson, H. P. 1979. The plant surface (mainly leaf). In Anatomy of the Dicotyledons. Vol. I. Systematic Anatomy of Leaf and Stem, with a Brief History of the Subject. 2nd ed. Metcalfe, C. R. and L. Chalk (eds.), Clarendon Press, Oxford. Pp. 97-165.
  40. Yang, Z.-R. and Q. Lin. 2005. Comparative morphology of the leaf epidermis in Schisandra (Schisandraceae). Botanical Journal of the Linnean Society 148: 39-56. https://doi.org/10.1111/j.1095-8339.2005.00396.x
  41. Yuzepchuk, S. V. 1939. Aruncus. In Flora of the U.S.S.R. Vol 4. Rosales and Sarraceniales. Izdatel''stvo Akademii Nauk SSSR. Komarov, V. L. (ed.), Moscow, Leningrad. Pub. by Israel Program for Scientific Translations Ltd., Jerusalem. Pp. 238-240.
  42. Zhou, Z. K., H. Wilkinson and Z. Y. Wu. 1994. Taxonomical and evolutionary implications of the leaf anatomy and architecture of Quercus L. subgenus Quercus from China. Cathaya 7: 1-34.
  43. Zoric, L., L. Merkulov, J. Lukovic, P. Boza and D. Polic. 2009. Leaf epidermal characteristics of Trifolium L. species from Serbia and Montenegro. Flora 204: 198-209. https://doi.org/10.1016/j.flora.2008.02.002