DOI QR코드

DOI QR Code

The Content Analysis of Amino Acids Including GABA of Chlorella protothecoides under Mixtrophic Culture

혼합영양 배양에서 Chlorella protothecoides의 GABA를 포함한 아미노산 함량 분석

  • Received : 2018.05.14
  • Accepted : 2018.06.07
  • Published : 2018.06.30

Abstract

Chlorella is quantitatively and qualitatively high in protein with balanced essential amino acid profiles, vitamins and minerals. ${\gamma}-Aminobutyric$ acid (GABA) is broadly distributed in nature and fulfills multi-physiological functions including effect such as a health-promoting functional compound. To improve the GABA production, Chlorella protothecoides were grown through the modified mixtrophic culture medium containing 2L of sterilized bristol medium with 0.01% urea and 4.0% glucose in a 5L fermenter. The results showed that nineteen kinds of amino acid including GABA at C. protothecoides sample were analyzed using high performance liquid chromatography (HPLC). Glutamic acid in total concentration (%) of amino acid is the most abundant amino acid (33.10%), followed by alanine (20.48%) and GABA (17.48%). Three amino acids including GABA were responsible for more than 70% total concentration in C. protothecoides sample including eight essential and nine non-essential amino acids: aspartic acid, asparagine, serine, glutamine, histidine, glycine, threonine, arginine, tyrosine, valine, methionine, tryptophan, phenylalanine, isoleucine, leucine, lysine. As a result of this experiment, it is expected that Chlorella will be developed to a critical product having high value as, GABA, functional food materials.

Keywords

References

  1. Adeghate, E. and Ponery, A. S. 2002. GABA in the endocinepancreas: cellular localization and function in normal and diabetic rats, Tissue Cell. 34, 1-6. https://doi.org/10.1054/tice.2002.0217
  2. Boonburapong, B., Laloknam, S. and Incharoensakdi, A. 2016. Accumulation of gamma-aminobutyric acid in the halotolerant cyanobacterium Aphanothece halophytica under salt and acid stress. J. Appl. Phycol. 228(1), 141-148
  3. Bouche, N and Fromm, H. 2004. GABA in plants: Just a metabolite? Trends Plant Sci. 9:110-115. https://doi.org/10.1016/j.tplants.2004.01.006
  4. Borowitzka M. A. 2013. High-value products from microalgae-their development and commercialisation. J. Appl. Phycol. 25, 743-756. https://doi.org/10.1007/s10811-013-9983-9
  5. Bown, A. W. and Shelp, B. J. 1997. The metabolism and functions of ${\gamma}$-aminobutyric acid. Plant Physiol. 115, 1-5. https://doi.org/10.1104/pp.115.1.1
  6. Brown, M. R. and Jeffrey, S. W. 1992. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J. Exp. Mar. Biol. Ecol. 161(1), 91-113. https://doi.org/10.1016/0022-0981(92)90192-D
  7. Cha, J. Y., Kim, J. W. Park, B. K. Jin, H. J. Kim, S. Y. and Cho. Y. S. 2008. Isolation and identification of Chlorella sp. CMS-1 and the chemical composition of its hot water extract. J. Life Sci. 18, 1723-1727. https://doi.org/10.5352/JLS.2008.18.12.1723
  8. Chang, J. S., Lee, B. S. and Kim, Y. G. 1992. Changes in ${\gamma}$-aminobutyric acid (GABA) and the main constituents by a treatment conditions and of anaerobically treated green tea leaves. Korean J. Food Sci. Technol. 24, 315-319
  9. Chen, H., Zheng, Y., Zhan, J., He, C. and Wang, Q. 2017. Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism. Biotechnol. Biofuels. 10, 153 https://doi.org/10.1186/s13068-017-0839-4
  10. Cho, S. H., Kwon, O. S., Kwon, H. B., Kim, S. Y., Kim, W. S., Kim, C. K., Park, S. S., Bae, J. H., Lee, C. J., Chang, S. H., Jeong, H. S. and Choi, J. W. 2007. Concepts in Biochemistry, pp. 597-600, third, ed. Worldsci. Korea.
  11. Dhakal, R, Bajpai, V. K. and Baek, K. H. 2012. Production of GABA (${\gamma}$-aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43, 1230-1241. https://doi.org/10.1590/S1517-83822012000400001
  12. Endo, H., Nakajima, K., Chino, R. and Shirota, M. 1974. Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agr. Biol. Chem. 38(1), 9-18. https://doi.org/10.1080/00021369.1974.10861121
  13. Heredia-Arroyo, T., Wei, W. and Hu B. 2010. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl. Biochem. Biotechnol. 162(7), 1978-1995. https://doi.org/10.1007/s12010-010-8974-4
  14. Ge, S, Pradhan, D. A., Ming G. L. and Song, H. 2007. GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci. 30, 1-8. https://doi.org/10.1016/j.tins.2006.11.001
  15. Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N. and Tredici, M. R. 2014. Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnol. Biofuels. 7(1), 84. https://doi.org/10.1186/1754-6834-7-84
  16. Guzman, S., Gato, A. and Calleja., J. M. 2001. Antiinflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 15, 224-230. https://doi.org/10.1002/ptr.715
  17. Guzman, S., Gato, A., Lamela, M., Freire-Garabal M. and Calleja. J. M. 2003. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 17, 665-670. https://doi.org/10.1002/ptr.1227
  18. Hasegawa, T., Matsuguchi, T., Noda, K,, Tanaka, K., Kumamoto, S., Shoyama, Y. and Yoshikai, Y. 2002. Toll-like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from Chlorella vulgaris. Int. Immunopharmacol. 2, 579-589. https://doi.org/10.1016/S1567-5769(02)00002-4
  19. Huo, S., Wang, Z., Zhu, S., Zhou, W., Dong, R. and Yuan, Z. 2012. Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China. Bioresour. Technol. 121, 76-82. https://doi.org/10.1016/j.biortech.2012.07.012
  20. Lane, T. R. and Stiller, M. 1970. Glutamic acid decarboxylation in Chlorella. Plant Physiol. 45, 558-562 https://doi.org/10.1104/pp.45.5.558
  21. Leu, S. and Boussiba S. 2014. Advances in the production of high-value products by microalgae. Ind. Biotechnol. 10, 169-183. https://doi.org/10.1089/ind.2013.0039
  22. Merchant, R. E., Andre, C. A. and Sica, D. A. 2002. Nutritional supplementation with Chlorella pyrenoidosa for mild to moderate hypertension. J. Med. Food. 5, 141-152. https://doi.org/10.1089/10966200260398170
  23. Miao, X. and Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97(6), 841-846. https://doi.org/10.1016/j.biortech.2005.04.008
  24. Miranda, M. S., Sato, S. and Mancini-Filho, J. 2001. Antioxidant activity of the microalga Chlorella vulgaris cultered on special condition. Boll. Chim. Farm. 140, 165-168.
  25. Mody, I., De Koninck, Y., Otis, T. S. and Soltesz, I. 1994. Bridging the cleft at GABA synapses in the brain, Trens Neurosci. 17, 517-525. https://doi.org/10.1016/0166-2236(94)90155-4
  26. Oh, C. H. and Oh, S. H. 2004. Effect of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis, J. Med. Food. 7, 19-23. https://doi.org/10.1089/109662004322984653
  27. Ohmori, M., Yano, T., Okamoto, J., Tsushida, T., Murai, T. and Higuchi, M. 1987. Effect of anaerobically treated tea (Gabaron tea) on blood pressure of spontaneously hypertensive rats, Nippon Nogei Kagaku Kaishi. 61, 1449-1451. https://doi.org/10.1271/nogeikagaku1924.61.1449
  28. Safi, C., Zebib, B., Merah, O., Pontalier, P. Y. and Vaca-Garcia, C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Ren. Sustain. Energy Rev. 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007
  29. Shibata. S., Natori, Y., Nishihara, T., Tomisaka, K., Matsumoto, K., Sansawa, H. and Nguyen, V. C. 2003. Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes, J. Nutr. Sci. Vitaminol. 49, 334-339. https://doi.org/10.3177/jnsv.49.334
  30. Shimada, M., Hasegawa, T., Nishimura, C., Kan, H., Kanno, T., Nakamura, T. and Matsubayashi, T. 2009. Anti-hypertensive effect of gamma-aminobutyric acid (GABA)-rich Chlorella on high-normal blood pressure and borderline hypertension in placebo-controlled double blind study. Clin. Exp. Hypertens. 31(4):342-54. https://doi.org/10.1080/10641960902977908
  31. Snedden, W. A. and Fromm, H. 1998. Calmodulin, calmodulin related proteins and plant responses to the environment. Trends. Plant Sci. 3, 299-304. https://doi.org/10.1016/S1360-1385(98)01284-9
  32. Won, S. Y., Kim, J., Lee, M. and Oh, K. 2013. The effect of GABA-enriched chlorella intake and voluntary wheel running on blood pressure, running distance and antioxidant enzyme in spontaneously hypertensive rats. Exerc. Sci. 22(1), 34-42.
  33. Xu, H., Miao, X. and Wu, Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126(4), 499-507. https://doi.org/10.1016/j.jbiotec.2006.05.002