DOI QR코드

DOI QR Code

SOLUTIONS OF VECTOR VARIATIONAL INEQUALITY PROBLEMS

  • Received : 2018.04.17
  • Accepted : 2018.06.02
  • Published : 2018.06.30

Abstract

In this paper, we prove the existence results of the solutions for vector variational inequality problems by using the ${\parallel}{\cdot}{\parallel}$-sequentially continuous mapping.

Keywords

References

  1. Ravi P. Agarwal, M. K. Ahmad and Salahuddin, Hybrid type generalized multivalued vector complementarity problems, Ukrainian Math. J., 65 (1) (2013), 6-20.
  2. G. A. Anastassiou and Salahuddin, Weakly set valued generalized vector variational inequalities, J. Computat. Anal. Appl. 15 (4) (2013), 622-632.
  3. M. Fabian. P. Habala, P. Hajek, V. Monlesinos Santalucia, J. Lelant and V. Zizler, Variational Analysis and Infinite Dimensional Geometry, Springer-Verlag, New york, 2001.
  4. S. S. Chang, Fixed Point Theory with Applications, Chongquing Publishing House, Chongqing, 1984.
  5. S. S. Chang, Variational Inequalities and Complementarity Problems, Theory with Applications, Shanghai Scientific and Tech. Literature Publishing House, Shanghai, 1991.
  6. S. S. Chang, G. Wang and Salahuddin, On the existence theorems of solutions for generalized vector variational inequalities, J. Inequal. Appl. (2015), 2015:365. https://doi.org/10.1186/s13660-015-0856-4
  7. G. Y. Chen, Existence of solutions for a vector variational inequalities: An extension of Hartman-Stampacchia theorems, J. Optim. Theory Appl. 74 (3) (1992), 445-456. https://doi.org/10.1007/BF00940320
  8. X. P. Ding and Salahuddin, Generalized mixed general vector variational like inequalities in topological vector spaces, J. Nonlinear Anal. Optim. 4 (2) (2013), 163-172.
  9. K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (4) (1984), 519-537. https://doi.org/10.1007/BF01458545
  10. F. Ferro, A minimax theorem for vector valued functions, J. Optim. Theory Appl. 60 (1989), 19-31. https://doi.org/10.1007/BF00938796
  11. F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems: In R. W. Cottle, F. Giannessi and J. L. Lions (Eds) Variational Inequalities and Complementarity Problems, John Wiley and Sons, Chinchester. (1980), 151-186.
  12. G. Hartmann and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math. 115 (1966), 271-310. https://doi.org/10.1007/BF02392210
  13. S. Laszlo, Some existence results of solutions for general variational inequalities, J. Optim. Theory Appl., 150 (2011), 425-443. https://doi.org/10.1007/s10957-011-9830-6
  14. B. S. Lee, M. F. Khan and Salahuddin, Hybrid type set valued variational like inequalities in reflexive Banach spaces, J. Appl. Math. Informatics. 27 (5-6) (2009), 1371-1379.
  15. B. S. Lee and Salahuddin, Minty lemma for inverted vector variational inequalities, Optimization 66 (3) (2017), 351-359. https://doi.org/10.1080/02331934.2016.1271799
  16. V. D. Radulescu, Qualitative analysis of nonlinear elliptic partial differential equations: Monotonicity Analysis and Variational Methods, Hindawi Publishing Corporation, New York, 2008.
  17. Salahuddin, Generalized vector quasi variational type inequalities, Trans. Math. Prog. Appl. 1 (12) (2013), 51-64.
  18. Salahuddin, General set valued vector variational inequality problems, Commun. Optim. Theory, Article ID 13 (2017), 1-16.