DOI QR코드

DOI QR Code

알루미늄 2024 표적에 대한 HE 탄두 파편의 관통 특성 연구

A Study on the Penetration Characteristics of a Steel Fragment Impacting on the Target Plate of Aluminum 2024

  • Kim, Deuksu (Department of Basic Science, Korea Air Force Academy) ;
  • Kang, Sunbu (Department of Basic Science, Korea Air Force Academy) ;
  • Jung, Daehan (Department of Mechanical Engineering, Korea Air Force Academy) ;
  • Chung, Youngjin (Department of Aeronautical Science, Jungwon University) ;
  • Park, Yongheon (Department of Aeronautical Science, Jungwon University) ;
  • Park, Seikwon (Department of Aeronautical Science, Jungwon University) ;
  • Hwang, Changsu (Department of Aeronautical Science, Jungwon University)
  • 투고 : 2017.11.30
  • 심사 : 2018.01.27
  • 발행 : 2018.03.01

초록

본 논문은 한국형 전투기 개발 시 적의 위협에 대한 취약성 분석을 위해 요구되는 고속 관통자가 표적을 관통하는 기구에 대해 수치 해석적으로 연구한 결과이다. 표적은 1 mm~6.3 mm 두께를 갖는 준 무한평면의 알루미늄(Aluminum) 2024 재질을 고려하였다. 관통자는 반구형 노즈 형상을 갖는 강(steel) 재질로, 입사속도는 350~3353 m/s까지, 질량은 0.32~16 g까지 갖는 것으로 고려하였다. 수치해석을 위해 사용된 실 사격 데이터는 THOR 방정식으로부터 추정하여 유추하였다. 수치해석 결과 표적을 관통하는 과정에서 관통자의 탄도한계속도는 관통자의 질량에 대한 지수 함수적으로 감소하는 수식으로 형식화(closed form of formalization) 하였다. 관통 후 잔류속도 및 잔류질량은 표적의 두께와 관통자의 질량 및 입사속도에 의존된 지수 함수적으로 감소하는 수식으로 각각 형식화하였다.

We have studied the damage mechanism of a metallic thin plate by the highly energetic fragments generated from high explosive(HE) warhead. The penetration process has presumed that the velocity of a fragment is in the range of 350 m/s to 3353 m/s, the thickness of Aluminum 2024 target plate is in the range of 1 mm~6.3 mm thick. The mass of fragment with hemisphere nose shape is in the range of 0.32 g to 16 g. The analytical solution for penetration process has been derived by using the report of the project THOR. The results of analysis implied that the closed forms by an exponentially decay function well fit the change of the ballistic limit velocity, loss velocity and loss mass of fragment as the mass of fragment and the thickness of target plate increase.

키워드

참고문헌

  1. JTCG/ME, Penetration Equations Handbook for Kinetic-Energy Penetration(U), Joint Technical Coordinating Group for Munitions Effective(Anti-Air), JTCG/ME-77-16, 1985.
  2. Federal Aviation Administration(FAA), Advanced Aircraft Material-Engine Debris Penetration Testing. Office of Aviation Research and Development. Washington, D.C., 2005.
  3. Kim, K. S., and Lee, J. H., "Vulnerability Assessment Procedure for the Warship Including the Effect of Shotline and Penetration of Fragments," Journal of the Society of Naval Architects of Korea, Vol. 49, No. 3, 2012, pp. 254-263. https://doi.org/10.3744/SNAK.2012.49.3.254
  4. U. S. Army Test and Evaluation Command Test Operations Procedure, "Ballistic Tests of armor Materials," Report No. TOP 2-2-710, U. S. Army Aberdeen Proving Ground(STEAP-MT-M) Aberdeen Proving Ground, MD. 21005, April 6, 1977.
  5. Mascianica, F. S., "Ballistic Technology of Lightweight Armor materials (U)," Army Materials Research Agency, Watertown, Mass., AMRA MS 74-07, Sep. 2004.
  6. Gabi Ben-Dor, Anatoly Dubinsky, and Tov Elperin, "High-Speed Penetration Dynamics," World Scientific Publishing Co. Pte. Ltd., Singapore, 2013.
  7. Recht R. F., "Chapter 7 - High Velocity Impact Dynamics: Analytical Modeling and Plate Penetration Dynamics," John Wiley & Sons, Inc., 1990, pp. 443-514.
  8. Allen, W. A., Mayfield, E. B., and Morrison, H. L., "Dynamics of a projectile Penetrating Sand," Journal of Applied Physics, Vol. 28, No. 3, 1957.
  9. Recht, R. F., and Finnegan, S. A., "Penetration Equations for Tungsten Fragments," Denver Research Institute, Denver, CO. NWC TP 6788, Naval Weapons Center, China Lake, CA, May 1986.
  10. Ipson, T. W., and Recht, R. F., "Ballistic Perforation by Fragments of Arbitrary Shape," Denver Research Institute, NWC TP 5972, Naval Weapons Center, China Lake, CA, May 1986.
  11. Jung, K. J., "A Study on Survivability of Combat Aircraft in Conceptual Design," Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 26, No. 7, 1998, pp. 153-160.
  12. Yang, J. S., Lee K. T., and Myeong, H. S., "The Advanced Study of GUI Based Software SACSA for the Aircraft Combat Survivability Analysis and Aircraft/Ground-based Threat Database," Proceeding of The Korean Society for Aeronautical & Space Sciences 2012 Conference, 2012, pp. 824-829.
  13. Kim, J. H., Yang, J. S., Kim, S. H., and Lee, K. T., "The Study of Improved GUI Based Integrated Software for the Aircraft Combat Survivability Analysis," Proceeding of The Korean Society for Aeronautical & Space Sciences 2012 Conference, 2012, pp. 1878-1883.
  14. Kim, K. S., Lee, J. H., Son, and Hwang, S. Y., "Simplified Vulnerability Assessment Procedure for the Warship Based on the Vulnerable Area Approach," Journal of the Society of Naval Architects of Korea, Vol. 48, No. 5, 2011, pp. 404-413. https://doi.org/10.3744/SNAK.2011.48.5.404
  15. Kim, K. S., Lee, J. H., Son, G. J., and Jeon, J. I., "A study of the procedure for integrated survivability assessment," Society of CAD/CAM Engineers 2012 Conference, 2012, pp. 824-840.
  16. Kim, H. S., "Development of Design & Analysis Technology for Total Ship Survivability Enhancement," Korea Institute of Machinery & Materials, 2012.
  17. Khoda-rahmia, H., Fallahib A., and Liaghatc, G. H., "Incremental deformation and penetration analysis of deformable projectile into semi-infinite target," International Journal of Solids and Structures, Vol. 43, Issues 3-4, Feb. 2006, pp. 569-582. https://doi.org/10.1016/j.ijsolstr.2005.06.072
  18. Alekseevskii, V. P., "Penetration of a rod into a target at high velocity. In Combustion, Explosion and Shock Waves 2," Faraday Press, New york, USA, 1966.
  19. Tate, A., "A theory for the deceleration of long rods after impact," J. Mech. Phys. Solids, Vol. 15, 1967, pp. 387-399. https://doi.org/10.1016/0022-5096(67)90010-5
  20. Project THOR Technical Report No. 47, The Johns Hopkins University, Institute for Cooperative Research, Ballistic Analysis Laboratory, Baltimore, MD., 1961
  21. Arthur J. Dzimian, "The Penetration of Steel Sphere into Tissue Models," U. S. Army, Chemical Warfare Laboratories, Technical Report, CWLR 2226, Aug. 1956.
  22. George W. Stone, Security and Survivability Department, 5822, Sandia National Laboratories, Albuquerque, New Mexico 87185.
  23. Backman, M. E., and Goldsmith, W., "The Mechanics of Penetration of Projectiles Into Targets," Int. J. Eng. Sci. Vol. 16, Issue 1, 1978, pp. 1-99. https://doi.org/10.1016/0020-7225(78)90002-2
  24. Project THOR Technical Report No. 51, The Johns Hopkins University, Institute for Cooperative Research, Ballistic Analysis Laboratory, Aberdeen Proving Ground, MD., 1963.
  25. Zook, J., "An Analytical Model of Kinetic Energy Projectile/Fragment Penetration," BRL MR 2797, 1977.
  26. James Dehn, TECHNICAL REPORT ARBRL-TR-02188, Particle Dynamics of Target Penetration, Sep. 1979.
  27. Holloway, C. L., Danish, M. B., and Matts., J. A., "Penetration Relations for Tungsten Alloy Fragments versus Selected Target Materials," ARBRL-TR-02087, 1978.
  28. DOE/TIC-11268, "A manual for the prediction of blast and fragment loadings on structures," U. S. Department of Energy, 1981
  29. Dusenberry, D. O., "Handbook for Blast Resistant Design of Buildings," J. Wiley & Sons, Hoboken, NJ, 2010.