DOI QR코드

DOI QR Code

복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter

  • Song, Jeonggyu (Department of Aerospace Engineering, Chungnam National University) ;
  • Jeong, Junho (Department of Aerospace Engineering, Chungnam National University) ;
  • Yang, Seungwon (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Seungkeun (Department of Aerospace Engineering, Chungnam National University) ;
  • Suk, Jinyoung (Department of Aerospace Engineering, Chungnam National University)
  • 투고 : 2017.08.16
  • 심사 : 2018.01.31
  • 발행 : 2018.03.01

초록

본 논문에서는 복수 Position Sensitive Detector(PSD) 센서와 IR Beacon Module(적외선 비콘 모듈)을 이용하여 우주비행체의 랑데부/도킹/군집 운용과 같은 근접 운용을 위한 칼만 필터 기반의 상대항법 알고리즘 연구를 수행한다. PSD 센서와 적외선 비콘 모듈은 각각 Target Satellite과 Chaser Satellite에 장착되어 위성의 상대 위치와 상대 자세 정보를 획득하여 위성간 근접운용에 사용한다. 각각의 상대 항법 기법의 성능을 비교 분석하기 위하여 수치 시뮬레이션을 수행한다. 상대항법 알고리즘에 사용된 PSD 센서와 적외선 비콘 모듈의 광학적 모델링과 작동 원리를 기반으로 칼만필터의 측정 모델을 구성한다. 확장 칼만 필터(EKF)와 무향 칼만 필터(UKF)는 우주비행체의 병진 운동 및 회전 운동에 대한 운동학 및 동역학적 특성을 활용하는 측정 융합에 기반을 둔 확률론적 상대항법 기법으로 사용된다. EKF와 UKF, 두 필터의 상대 자세 및 상대 위치 추정 성능을 비교한다. Target Satellite과 Chaser Satellite에 장착되는 PSD 센서와 적외선 비콘 모듈의 개수와 상대항법기법의 변화에 따른 수치 시뮬레이션을 수행하여 성능 변화를 확인하였다.

This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.

키워드

참고문헌

  1. Pal, M., and Bhat, M., "Star Sensor Based Spacecraft Angular Rate Estimate Independent of Attitude Determination," 2013 IEEE International Conference on Control Applications(CCA), Aug. 2013, pp. 580-585.
  2. Kim, K., Oh, C., Tahk, M., and Bang, H., "Application of the Vision-Based Navigation and Control for Autonomous Spacecraft Dokcing," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, Apr. 2004, pp. 294-297.
  3. Alonso, R., Crassidis, J. L., and Junkins, J. L., "Vision-based Relative Navigation for Formation Flying of Spacecraft," Proceeding of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Aug. 2000.
  4. Byeon, S., Lee, D., and Bang, H.,, "Experimental Research on Relative Navigation using Stereo VIsion," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, Apr. 2012, pp. 647-651.
  5. Udrea. B., and Decoust, C., "Relative Navigation Algorithm Between Cooperating Spacecraft," AIAA Guidance, Navigation, and Control Conference and Exhibit, Aug. 2008.
  6. Gu, D., Bu, S., Xing, G., Ye, B., and Chen, X., "Autonomous Relative Navigation with Laser Range Finder and Inertial Sensor for Uncooperative Spacecraft Rendezvous," IEEE International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping (M2RSM), Jan. 2011.
  7. Tweddle, B. E., and Saenz-Otero, A., "Relative Computer Vision Based Navigation for Small Inspection Spacecraft," AIAA Guidance, Navigation, and Control Conference, Aug. 2011.
  8. Wu, F., Sui, X., and Zhao, Y., "Relative Navigation for Formation Flying Spacecrafts using X-ray Pulsar," IEEE/ION Position Location and Navigation Symposium, Apr. 2012, pp. 1289-1292.
  9. Dong, S., Fengqi, Z., and Jun, Z., "Relative Navigation Based on UKF for Multiple Spacecraft Formation Flying," AIAA Guidance, Navigation, and Control Conference Exhibit, Aug. 2004.
  10. Whittaker, M. P., Linares, R., and Crassidis, J. L., "Photometry and Angles Data For Spacecraft Relative Navigation," AIAA Guidance, Navigation, and Control Conference Exhibit, Aug. 2013.
  11. Philip, N. K., and Ananthasayanam, M. R., "Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft," Acta Astronautica, Vol. 52, 2003, pp. 511-522. https://doi.org/10.1016/S0094-5765(02)00125-X
  12. Sorgenfrei, M., Kemp, D., Harness, A., and Nehrenz, M., "Validation of a Low-Cost Avionics Package for Small Spacecraft via Rocket-Based Field Tests," AIAA Aerospace Sciences Meeting, Jan. 2017.
  13. Lee, M., "Numerical Model Design of 3-D Precision Position Decision System based on PSD," Chungnam National University Master's Thesis, 2013.
  14. Jeong, J., Kim, S., and Suk, J., "Parametric study of sensor placement for vision-based relative navigation system of multiple spacecraft," Acta Astronautica, Dec. 2017, pp. 36-49.
  15. Song, J., Jeong, J., Suk, J., and Kim, S., "Relative Attitude and Position Estimation Using Gimbaled Vision System for Spacecraft," APISAT 2016, Oct. 2016.
  16. Jeong, J., Suk, J., and Kim, S., "A Parametric Study of PSD/Beacon Module Placement for Relative Navigation of Spacecraft," APISAT 2016, Oct. 2016.
  17. Faugeras, O., "Three-Dimensional Computer Vision: A Geometric Viewpoint," The MIT Press, 2001.