DOI QR코드

DOI QR Code

전진 비행하는 쿼드 틸트 로터의 공력성능 및 특징에 대한 수치적 연구

Numerical Analysis on Aerodynamic Performances and Characteristics of Quad Tilt Rotor during Forward Flight

  • Lee, Seonggi (Department of Aerospace Engineering, Pusan National University) ;
  • Oh, Sejong (Department of Aerospace Engineering, Pusan National University) ;
  • Choi, Seongwook (Korea Aerospace Research Institute) ;
  • Lee, Yunggyo (Korea Aerospace Research Institute) ;
  • Park, Donghun (Department of Aerospace Engineering, Pusan National University)
  • 투고 : 2018.01.08
  • 심사 : 2018.01.27
  • 발행 : 2018.03.01

초록

본 연구에서는 전진 비행하는 쿼드 틸트 로터(Quad Tilt Rotor, QTR)에 대한 수치적 연구를 수행하여, 각 구성 요소에 의한 간섭효과와 위상차 및 로터 회전 방향 등 로터 운용조건에 의한 영향을 분석하였다. 효율적인 로터 유동장 계산을 위해 오픈소스 CFD 코드인 OpenFOAM에 Actuator Surface Method(ASM) 기법을 결합한 해석자를 사용하였다. 전 후방 날개의 양력은 날개 끝단에 부착된 로터의 회전 방향에 따라 증감하며 특히 후방 날개에서는 전 후방 로터에 의한 간섭효과가 복합적으로 나타난다. 전 후방 로터의 위상차에 의한 날개의 공력 성능 변화는 상대적으로 미미함을 확인하였다. 로터에서는 날개로 인한 폐쇄효과 발생에 따라 국소적으로 높은 추력이 발생한다. 특히, 후방 로터에서는 전방 나셀에서 발생한 후류의 간섭효과로 인해 전방 로터 대비 높은 국소적 추력이 발생한다. 또한 로터 간의 위상차에 따라 추력 요동의 진폭이 감소할 수 있음을 확인하였으며 운용 조건에 따른 전 후방 로터의 성능과 전체 비행체의 공력 성능을 비교, 분석하였다.

In this study, numerical analyses on Quad Tilt Rotor(QTR) are carried out to investigate the interference effect of components and effect of operating condition during forward flight. Actuator Surface Method(ASM) which is implemented in an open source CFD code, OpenFOAM, is used to calculate the flow field around QTR with high computational efficiency. The lift of the front and rear wing is found to increase or decrease depending on the rotation direction of the rotor. At the rear wing, the interference effects of the front and rear rotor appear as a combined manner. Performance change due to the phase difference is found to be insignificant. For both rotors, the locally higher thrust is generated by the blockage effect of the wing. The interference effect of wake from the front nacelle contributes to higher local thrust for the rear rotor compared to the front rotor. And it is observed that the amplitude of thrust oscillation can decrease depending on the phase difference between the rotors. Aerodynamic performances of both rotors and the entire aircraft were compared and analyzed for various operating conditions.

키워드

참고문헌

  1. Snyder, D. E., "The Quad Tiltrotor: Its Beginning and Evolution," 56th American Helicopter Society, Virginia, May, 2000.
  2. Gupta, V., and Baeder, J. D., "Quad Tiltrotor Aerodynamics in Ground Effect," 58th AHS Annual Forum, Montreal, June, 2002.
  3. Gupta, V., and Baeder, J. D., "Investigation of Quad Tiltrotor Aerodynamics in Forward Flight Using CFD," 20th AIAA Applied Aerodynamics Conference, St. Louis, June, 2002.
  4. Sitaraman, J., and Baeder, J. D., "Analysis of Quad Tilt Rotor Blade Aerodynamic Loads using Coupled CFD/Free Wake Analysis," 20th AIAA Applied Aerodynamics Conference, St. Louis, June, 2002.
  5. Lee, Y., and Baeder, J. D., "Vortex Tracking in Overset Method for Quad Tilt Rotor Blade Vortex Interaction," 22nd Applied Aerodynamics Conference, Orlando, June, 2003.
  6. Lee, Y., and Baeder, J. D., "Vortex Tracking using Overset Grids for Quad Tilt Rotor in Forward Flight," 21st Applied Aerodynamics Conference and Exhibit, Providence, August, 2004.
  7. Sheng, C., and Narramore, J. C., "Computational Simulation and Analysis of Bell Boeing Quad Tiltrotor Aero Interaction," Journal of the American Helicopter Society, Vol. 54, No. 4, 2009, pp. 42002. https://doi.org/10.4050/JAHS.54.042002
  8. Dobrev, D., Massouh, F., and Rapin, M., "Actuator Surface Hybrid Model," Journal of Physics: Conference Series, Vol. 75, No. 1, 2007, pp. 012019. https://doi.org/10.1088/1742-6596/75/1/012019
  9. Kim, Y., and Park, S., "Unsteady Momentum Source Method for Efficient Simulation of Rotor Aerodynamics,," Journal of Aircraft, Vol. 50, No. 1, 2013, pp. 324-327. https://doi.org/10.2514/1.C031934
  10. Kim, T., Oh, S., and Yee, K., "Improved actuator surface method for wind turbine application," Renewable Energy, Vol. 76, 2015, pp. 16-26. https://doi.org/10.1016/j.renene.2014.11.002
  11. Hwang, S. J., Kim, C. W., Choi, S. W., and Kim, S. G., "Initial Design of the Quadtilted VTOL UAV (QTP50)," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference. Nov. 2016, pp. 593-594.
  12. Kim, T., Oh, S., and Yee, K., "Novel Actuator Surface Method for Helicopter Rotor Analysis," Journal of Aircraft, Vol. 53, No. 6, 2016, pp. 1947-1952. https://doi.org/10.2514/1.C033666
  13. Dingeldein, R. C., "Wind-Tunnel Studies of the Performance of Multi Rotor Configurations," NACS TN 2326, 1954.
  14. Lakshminarayan, V. K., "Computational Investigation of Micro-Scale Coaxial Rotor Aerodynamics in Hover," PhD Dissertation, University of Maryland, 2009.
  15. Lee, J., Oh, S., and Yee, K., "Aerodynamic Characteristic Analysis of Multi-Rotors Using a Modified Free-Wake Method," Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 52, No. 177, 2009, pp. 168-179. https://doi.org/10.2322/tjsass.52.168
  16. Witkowski, D. P., Lee, A. K. H., and Sullivan, J. P., "Aerodynamic Interaction Between Propellers and Wings," Journal of Aircraft, Vol. 26, No. 9, 1989, pp. 829-836. https://doi.org/10.2514/3.45848